CIRCULATING COPY
TOPOLOGICAL STRUCTURES FOR GENERALIZED
BOUNDARY REPRESENTATIONS
Leonidas Bardis and Nicholas Patrikalakis

MITSG 94-22
LOAN COPY ONLY

Sea Grant College Program
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Grant: NA9DAA-D-5G424
Project No: 92-RU-23

i

Related MIT Sea Grant College Program Publications

Feature extraction from B-spline marine propeller representations. Nicholas M.
Patrikalakis and Leonidas Bardis. MITSG 93-12]. $2.

Cut locus and medial axis in global shape interrogation and represeniation.
Franz-Erich Wolter. MITSG 93-11. $4.

An Automatic coarse and fine surface mesh generation scheme based on medial
axis transform. Part I, Algorithms. Part I, Implementation. H. Nebi Gursoy
and Nicholas M. Patrikalakis. MITSG 93-7]. $2.

Offsets of curves on rational B-spline surfaces and surface approximation with
rational B-splines. L. Bardis and N. M. Patrikalakis. MITSG 91-24]. $4.

Surface intersections for geometric modeling. N. M. Patrikalakis and P.V.
Prakash. MITSG 91-23]. $2.

Please add $1.50 ($3.50 foreign) for shipping/handling and mail your check to :
MIT Sea Grant College Program, 292 Main Street, E38-300, Cambridge, MA 02139

Topological Structures for Generalized Boundary
Representations

Leonidas Bardis

Nicholas M. Patrikalakis

Massachusetts Institute of Technology
Cambridge, MA 02139-4307, USA

Design Laboratory Memorandum 91-18
Issued: September 7, 1991
Revised: June 4, 1992
Revised: July 2, 1992
Revised: September 24, 1993
Revised: January 12, 1994
Revised: September 13, 1994

Copyright (©1994 Massachusetts Institute of Technology
All rights reserved

Dedication

To our families.

Contents

List of Figures
Preface
1 Introduction

2 Mathematical Background
2.1 Topological Concepts e e e
2.2 Graph Theoretical Concepts i i e e

3 Boundary Representation Modeling Systems

3.1 Euler-Based Systems o . .0 e e e e e e e e e e e e
3.1.1 The Winged-Edge Structure. 0o,
3.1.2 The Geometric Work Bench (GWB)
3.1.3 Tle Hierarchical Face Adjacency Hypergraph (HFAH)
3.1.4 OtherModels 0 e e e e e e e

3.2 Data Structures for Non-Manifold Objects v v
3.2.1 The Radial-Edge Structure«
3.2.2 The Tri-Cyclic Cusp Structureo
3.2.3 Selective Geometric Complexes (SGC)
3.2.4 Other Non-Manifold Models

3.3 Abstract Models e e e
3.3.1 The Quad-Edge Structure
3.3.2 The Facet-Edge Pair Structure L,
3.3.3 The Hexblock Structure i i o i i e e i a s
3.3.4 The Cell-Tuple Structure
3.3.5 Other Abstract Approaches

ii

4 Applications and Concluding Remarks

4.1 Geometric Modeling for Computer-Aided Engineering
4.1.1 Representation Layer

4.1.2 Modeling Layer

..............

................

...............................

....................

4.2 QGeneralized Boundary-Representations for Computer-Aided Engineering

Bibliography

Index

iii

65
65
67
67
70

71

79

List of Figures

2.1
2.2
2.3
2.4

2.5
2.6
2.7
2.8
2.9
2.10
2.11

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

Homeomorphism between a circleand anellipse. 7
Non-Manifold point sets0 i e 9
Point sets that are not simplicial complexes 9
An example of triangulation of a triangular prism, adapted from Munkres, Ele-

ments of Algebraic Topology « . o .« oo e e e 10
Orientation of a two-simplex o v v v it e e e e e e 11
Subdivision of adiscanditsdual L oo oo oo 12
Genus of A tOTUS .+ v« v v v v e e e i e e e e e e e e e e 13
Asimple graph o e e 15
Octahedron and its planar graph 0 i e 16
Planar graphs and theirduals o oo 17
Incidence graph of an octahedrono oo oo 17
The winged-edge structure oo it e e 19
Plane models, adapted from Mantyla 20
Plane model of a pyramid, adapted from Mantyla 21
Faces sharing an edge in the radial-edge structure, adapted from Weiler 28
Edges sharing a vertex in the radial-edge structure, adapted from Weiler 29
The tri-cyclic-cusp data structure, adapted from Gursoz 30
Cusp definition, adapted from Choi oo 30
Edge-Orientation cycle, adapted from Gursoz 31
Two-dimensional geometric complex, adapted from Rossignac 34
Adjacency graph of complex, adapted from Rossignac 35
Refinement of a complex by subdivision, adapted from Rossignac 36
Merging of two complexes by primitive operations, adapted from Rossignac 37
Hierarchical structure of topological elements, adapted from Masuda 38

iv

3.14

3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28

Resultant shape extracted from merged object: (a) four primitive objects (b) re-

sultant object (c¢) volumes in merged object, adapted from Masuda 40
The edge functions, adapted from Guibas 42
Ring of edges around a vertex, adapted from Guibas 42
The guad-edge data structure, adapted from Guibas 45
The Makedge operator v v it it e e 46
Joining of twoedges e 47
Edges combined by Spliceo oo 48
Edges combined by Splice 48
The handcuff diagram, adapted from Laszlo 50
The facet-edge pair functions 51
A facet-edge pairanditsdual oo 52
The cell-tuple structure and the incidence graph, adapted from Brisson 57
The lift and unlift operator, adapted from Brisson 62
The join and unjoin constructor, adapted from Brisson. 62
The split and unsplit constructor, adapted from Brisson 63

Preface

Solid models have become an essential constituent of modern CAD systems. Boundary represen-
tation models are the natural choice when the solid object is bounded by free—form curves and
surfaces. There exist a great number of solid modelers based on manifold solid representation,
which use Euler operators for incremental object construction. Development of models for repre-
sentation of non—manifold objects has become an active research topic. On the other side, some
new data structures for genuine manifold representation have been devised, which are based on
topological and graph theoretical concepts and do not rely on Euler operators. This monograph
reviews the most well known models of the above three kinds. For each modeler reviewed here,
the representation space, data structures and basic constructors are discussed. Essential concepis
from topology and graph theory are treated briefly. Special emphasis has been placed on the cell-
tuple structure due to its expressive power and elegant mathematical formulation. Finally, this
monograph provides an overview of applications of geometric modeling in Computer—Aided Engi-
neering and specifically discusses the relative merits of various boundary representation modeling
systems in this context.

The authors are indebted to Prof. C. Chryssostomidis for his assistance and valuable comments.
Early discussions with Dr. C. Bliek and Dr. W. Hansmann on solid modeling issues are also
acknowledged. Useful detailed comments on an earlier draft of this monograph were provided by
Dr. E. Brisson, Mr. C.-Y. Hu, Dr. J. R. Rossignac, Dr. N. Sapidis, Mr. E. C. Sherbrooke, and
Prof. F.-E. Wolter and are greatly appreciated. Mr. 8. L. Abrams and Mr. C.-Y. Hu assisted in
editing the monograph.

Funding for this work was obtained in part from the Department of Commerce via the MIT Sea
Grant College Program under grant NA9OAA-D-5G424, the Office of Naval Research under grant
N00014-91-J-1014, and the National Science Foundation under grant numbers IRI-9224640 and
DDM-9215411.

L. Bardis

N. M. Patrikalakis

Massachusetts Institute of Technology
Cambridge, MA, USA

Chapter 1

Introduction

Representation of solid objects in an abstract form permitting storage, evaluation and processing
by a computer is the primary objective of solid modeling. During the past 15 years extensive
research has been carried out in this area and solid modeling systems have emerged with a wide
variety of representation capabilities. Engineering applications of solid modeling techniques were
aimed mostly at design, analysis and manufacturing of mechanical machine parts and assemblies.
On the other hand, no significant development has taken place in design and analysis of marine
and aeronautical structures bounded by sculptured surfaces and involving an extremely complex
internal subdivision. This monograph attempts a comparative study of existing solid modeling
methods in terms of their data structure and modeling space.

Point set topology [4, 48, 74, 103], algebraic topology [1, 39, 71, 75}, and graph theory [8, 45] pro-
vide theoretical foundations for modern solid modeling. Three major representation models have
emerged: decomposition, constructive and boundary models {26, 49, 69]. Decomposition models
are based on a limited class of primitive objects for the description of point sets. Quadtrees and
octtrees are the most successful models of this category. Quadtrees, [53, 97) are a decompuosition
of a two-dimensional point set into an arrangement of squares or rectangles covering the set. Ini-
tially, a minimal bounding rectangle is computed such that the point set §'is a subset of the point
set represented by the rectangle. This bounding rectangle occupies the root of the representation
tree. Then, this is subdivided into four equal rectangles, R;, ¢ = 1,2,3,4, represented by four
branches starting from the root node. The nodes at the lower end of these branches are classified
according to the set theoretic relations of the point sets represented by the respective rectangles
and the original point set. The tree node is black if B; C §, white if R;nS = @, and grey if
R;N S # 0 and neither of B; — § and § — R; is empty. The above subdivision process is repeated
at grey nodes until all nodes are either black or white or the rectangle dimensions are smaller
than a prespecified tolerance. Quadtrees owe their name to the 4-ary tree structure used for the
representation.

Octtrees [73, 99, 98, 119] are the three-dimensional counterparts of quadtrees. The primitive used
for three-dimensional point set subdivision is usually a cube. The point set classification step
after subdivision of a cube involves eight octants, which now require an 8-ary tree as a data model,
hence the name octtree. Quadtrees and octtrees have been used in image processing, rendering,
surface and volume calculations. Data structures for their representation and algorithms for their

interrogation (calculation of geometric properties, point classification, gecmetric transformations,
ray tracing, medial axis transforms) are discussed in [99, 98]. Octtrees require an excessive amount
of data in order to achieve an accurate surface representation compared with other representation
models. The storage complexity is of the order of the surface area of the objects. Further, the
octtree subdivision is dependent on the position and orientation of the object with respect to the
coordinate system used. The construction of an octtree subdivision is generally based on some
alternate representation or measured data. In [16, 100] some general spatial data structures based
on the octtree approach for representing solids with curved faces are introduced.

Constructive models describe point sets with the help of a number of primitive point sets. In
half-space models, these primitives are defined by algebraic inequalities. In models using the
Constructive Solid Geometry (C5G) approach [86, 90, 88] the primitives are geometric figures
having a relatively simple shape, such as cubes, cylinders, spheres, torii, etc. A solid is represented
as the root of a binary tree, whose nodes are Boolean set operators and leaves are occupied by
instantiated primitives of the above type. Instantiation involves specification of size, position and
orientation of a primitive. Set operators include union, intersection and difference of point sets. In
some pathological cases, solids containing two-dimensional or even one-dimensional components
may result from the above set operations, such as dangling edges or faces. To permit a closed
representation, regularized set operations have been introduced [89]. The result of a regularized
set operation is the closure of the interior of the set obtained from the mathematical definition of
the set operation involved. CS5G models are easy to use and cover a wide variety of solid shapes,
especially mechanical parts and assemblies. However, interrogation of CSG models requires their
conversion to decomposition [61, 63, G4] or boundary models [10, 15]. In some cases, special
techniques, such as ray casting are used [96]. Further, CSG is not particularly well suited to
model thin shell structures and manufacturing procedures common to marine and aerospace
structures such as heating, welding, and rolling [26].

Boundary models describe solids in terms of their bounding entities, such as faces, loops, edges
and vertices. In Boundary representation (B-rep) there is a clear separation between topological
and geometrical data. Topological data include connectivity information, i.e. adjacency rela-
tions between zero-dimensional (vertices), one-dimensional (edges), two-dimensional (faces) and
three-dimensional (shells) entities. Description of entities of the above type through mathemati-
cal curves and surfaces, such as straight lines, rational B-spline curves, planes, quadrics, rational
B-spline surface patches, is the basis of the geometrical data base of a B-rep model. Topolog-
ical information is highly structured, whereas geometrical information has the form of a data
repository pointed to by abstract topological entities., Most B-rep modelers are based on pla-
nar, polyhedral geometry {7, 11, 43, 70] although systems using free-form surfaces as geometrical
primitives have also started to appear [23).

Abstract models for the representation of topological information in B-rep modelers are subsets of
incidence graphs implemented by pointer structures. One major requirement of the data structure
is topological sufficiency, i.e. reconstruction of all adjacency relations involving any topological
entity. For example, given a particular face, find all edges and vertices of its boundary. Space
complexity of the underlying data structure and time complexity of interrogation algorithms play
an important role in the design and implementation of a B-rep modeler. Another important
characteristic of a modeling system based on B-rep representation is the ability to handle non-
manifold and mixed-dimension structures, such as polyhedra with dangling edges or faces, solids

intersecting each other along an edge or touching on a single vertex, etc. [43, 94, 112].

Parallel research directions in geometric modeling based on a B-rep representation resulted in
three model categories. Models of the first category deal with manifold structures and use Euler
operators as a structural primitive. The topological structure corresponding to an object is created
by adding or removing a minimum number of entities each time while preserving the validity of
the Euler-Poincaré formula. High level operators are implemented on top of Euler operators and
are used to build a complex structure, such as building a polyhedral model of a quadric, joining
or splitting solids along a common face, sweep and rotational operators and Boolean operators
[7, 11, 23, 70, 108].

Models of the second category use additional topological entities and relations to represent
non-manifold, mixed-dimensional structures. Euler-like or other primitive operators are used
to build models incrementally. Two of the known models of this type handle non-manifold, three-
dimensional objects [43, 112, 110, 109], while recently a model for non-manifold n-dimensional
objects has appeared [94].

Models of the third category are based on abstract mathematical structures for the representation
of manifold subdivisions of two, three, or n-dimensional space. Such models utilize a small
number of low level constructors maintaining the validity of the basic topological structures
[12, 13, 14, 29, 30, 40, 65, 66]. High level operators may be implemented based on the low
level ones as in models of the other categories. Such models have been unsed primarily for the
representation of the solution space of computational geometry problems, such as calculation of
Voronoi diagrams and Delaunay triangulations. Nevertheless, they provide powerful modeling
tools for scientific and engineering applications.

The above classification of B-rep models is based on one side on the modeling space and on
procedures followed to build complex objects on the other side. Other classifications using other
criteria are possible, such as internal characteristics of the data structure or representation of
ordering information [66).

In general, B-rep modelers provide a suitable basis for the implementation of interrogation algo-
rithms, such as graphical rendering, Boolean operations, calculations of integral properties (area,
volume, center of volume, moments of inertia, etc.). On the other hand, they are sensitive to
numerical inaccuracies, {50, 49). Hybrid modelers [90, 88] use the CSG representation as a user
interface and algorithms for converting the CSG to a B-rep model. Conversion algorithms make
heavy use of intersection calculations between surfaces, since a CSG model is based on Boolean
operations on solid primitives bounded by curved surfaces {18, 37, 57, 58, 60, 59, 84].

In [91] a brief account of recent developments and outstanding problems in solid modeling is
given.

This monograph is structured as follows. Chapter 2 provides a summary of mathematical defini-
tions and theorems, which are necessary-to enhance clarity-of the rest of the monograph. Chapter
3 is a review of systems based on the boundary representation method. Chapter 4 contains some
conclusions and provides some recommendations on possible applications of existing theory and
algorithms in the design, analysis and manufacture of structures bounded by sculptured surfaces
and involving extremely complex architectural subdivisions and structural features.

Chapter 2

Mathematical Background

As is mentioned in the Introduction, there is a clear distinction between topological and geomet-
rical information in B-rep models. Topology deals with properties of point sets that are invariant
under continuous geometric transformations. We repeat here some basic definitions and theorems
from topology 14, 48. 49, 74. 103], algebraic topology {1, 71. 75.. and graph theory 8, 45).

2.1 Topological Concepts

Definition 1 A topological space (X,T) is a pair composed of a set X and a set T of subsets of
X, the open sets of the topological space (X, T) or simply open sets of X, such that

1. the intersection of finitely many sets in T is agair in T and

2. the union of sets in T is also in T.

In view of the above definition, open sets are introduced in an axiomatic manner in contrast to
the approach followed in modern analysis, where open sets are defined with the help of a metric.
It should be noted that the union of an infinite number of open sets is also an open set.

Definition 2 A set P is closed if X — P is an open set.

The Euclidean space R™ = (z,22,...2p),2i € R, 1 i< nwithT = {g“(ﬁ, r),r>0,p€ R“}
is a topological space. B™{f, r) is defined as follows.

Definition 3 The open n-ball ﬁ"(ﬁ',r) of radius r centered at 7 is

B (pr)={ge® IF-ql < r} (2.1)

where || || is the Euclidean norm of a vector in R"

E=(z1,22,...,2,), IF = (3 =)? (2:2)

=1

Definition 4 A neighborhood of a point & € X is an open set I/ C X containing 7. It can be
proven that a set is open if it contains a neighborhood for each of its points.

Definition 5 A topological space (X, T) is called a Hausdorff space, if there exist disjoint neigh-
borhoods for each pair of distinct points of the set X.

Definition 6 The interior int(P) of any set P C X is defined as the set of all points of P which
have a neighborhood lying entirely in P.

Definition 7 The closure of P, cl{ P), is the complement of the interior of its complement with
respect to X.

cl(P) = (int(P%))° (2.3)

where

PP=X-P (2.4)

It can be proven that a set P is closed if and only if P = el(P).
Definition 8 The boundary of a set P is defined as

bd(P) = cl(P) - int(P) (2.5)

The term frontier of a set is also used to denote the boundary of a set.

Definition 9 The boundary of an open n-ball centered at p'is called the n — 1-dimensional sphere
of radius r centered at 7.

STt Br) = {7e ®", IF-dl=r} (2.6)

In the sequel, whenever we refer to the n-ball we will mean the n-dimensional ball of radius 1
centered at 0 = (0,...,0).

B" = {7e®", |lqll <1} (2.7)

Similarly, the n — 1-sphere is by convention the n — 1-dimensional sphere of radius 1 centered at
0.

§nt = {ge R, |lgll =1} (2.8)
Definition 10 A set P is called a bounded set if there exists a real number r > 0, such that
P c B*0,r).
Definition 11 If a set P C ®" is both closed and bounded, P is called a compact set.

This definition of a compact set is actually a theorem, based on a more general definition of
compactness [74].

Figure 2.1: Homeomorphism between a circle and an ellipse

Definition 12 A point & € X is called a limit or accumulation point of P if every neighborhood
of ¥ contains points of P other than #. The closure of a set P contains P and all of its limit
points.

Definition 13 A map f : (X, T) — (X', T') between two topological spaces (X, T") and (X', 7"} is
continuous if for every & € X, every neighborhood of f(#) has a neighborhood of ¥ as a preimage.
If f is bijective, i.e. one-to-one and the image of X under f is the entire X' and if f and its
inverse f~1 are both continuous, then f is called a homeomorphism. A map f is continuous if
for every open set A € 7', f~*(A) € T. Two topological spaces are homeomorphic if there is a
homeomorphism between them.

Definition 14 Two subsets P, of a topological space are called homeomorphic if there is a
homeomorphism h : X — X such that h(P) = @, i.e. the image of P under h is the set (.

In view of the above, the one-dimensional sphere &1 i.e. the circle, is homeomorphic to an ellipse.
The homeomorphism can be constructed as shown in Fig. 2.1. A finite cylinder or ellipsoid in 3
are homeomorphic to a 3-ball, but a torus is not.

In the following, we introduce the concept of n-simplex. For this purpose, we consider a set X,
of n + 1 points in space ™, X, = {&1,...,Fnp1}, H € R, 1 i < vt 1, & = (=4, Tiy),
which do not lie in the same » — 1 dimensional hyperplane. This is equivalent to

dei[M]#0 (2.9)

where

(M) = [@ns1 Gn --- G1 1] (2.10)
@ =[z1, .- 2)" (2.11)

|

M=f...117 (2.12)

Definition 15 The n-simplex A% is the set defined by

n+1 n+1
Ay ={F=> Ad, AERT, Y Xi=1} (2.13)
1=1 i=1

Thus. the n-simplex is the convex hull of points Z;. 1 < i < » 4+ L. Any two simplices A%, AP,
are homeomorphic to each other. A homeomorphism & between those simplices is defined by

n+1 n+1
B MEi) = D Aidi (2.14)
=1 1=1

Thus. we may refer simply to the n-dimensional simplex A™ of #°. A" is homeomorphic to the
closure of the n-ball. Further. its boundary bd{A™) is homeomorphic to the n — 1-sphere. The set
bd{ A™) consists of all lower dimensional simplices. Each subset of m+ 1 points from {Z,..... Za},
m £ n, determines another m-dimensional simplex A¢ € A%

Definition 18 If X, = {Z;,¢; € {1,...r},1 < j £ m+ 1}, X C X, then the m-dimensional
face A™ of A™ defined by X,, is the set obtained by setting Ar = 0 in (2.13), where & # i;,
1 <7< m+ 1. This face is homeomorphic to an m-simplex A™,

A simpiex A? in 2 is a triangular area ABC with non-collinear vertices A, B,C. Its one-
dimensional faces are the linear segments 4B, AC and BC and its zero-dimensional faces the
vertices A. B, C. Similarly, a simplex A% in R3 is the tetrahedron defined by four non-coplanar
points A, B,C, D. Its two-dimensional faces are triangles, defined by sets containing any three of
the above points, its one-dimensional faces are linear segments connecting any two of the vertices
and the zero-dimensional faces are the vertices 4, B.C, D.

Definition 17 An n-manifold M C R* with & > n is a set, whose every point has an (open)
neighborhood homeomorphic to the {open) ball B™. The boundary of manifold M, 8(3f) is the

set of those points 7 that have an (open) neighborhood homeomorphic to the half-n-ball. HB"
defined as

n
HB" = {{z1,...,zn) €R", D 22 <1, 2, 2 0} (2.15)

i=1

The sets R”, 5™ are n-manifolds. The interior of a torus in R2 is a three-manifold and the torus
surface a two-manifold. The set inf(A"™) is also an n-manifold.

Definition 18 An n-manifold with boundary is a set M c R* with k > n, whose every point
has a neighborhood homeomorphic either to the open ball B” or to the half-n-ball HB .

Figure 2.2 shows some examples of non-manifold point sets.

Definition 19 An n-dimensional simplicial complex C is a finite union of simplexes of dimension
< n such that all faces of any simplex of C are also in C and the intersection of any two simplexes
of C is either the empty set or a face of each one of them. The point set defined by a simplicial
complex C is denoted by |C] and is called the polytope of C.

A X

Triangle with a Two triangies with Cube with dangiing
dangling edge a common vertex face and edge

(a} (b) (c)

=<

Two solids touching at

a point Two solids with &
{d) common edge

(e)

Figure 2.2: Non-Manifold peoint sets

The shapes of Figure 2.2 are all simplicial complexes. Rectangles, cubes, and prisms in particular
(Figures 2.2c, 2.2¢) may be easily decomposed intro simplexes of the appropriate dimension {tri-
angles or tetrahedra). .\ sphere or a torus is not a simplicial complex as it cannot be decomposed
into a finite number of simplexes. The set consisting of an n-simplex and all of its faces is a
simplicial complex. Fig. 2.3 shows examples of point sets that are not simplicial compiexes. In
the left example, the intersection between the two triangles is not a face of either triangie. In the
right example, the intersection between the triangie and the line segment is a face of the segment
but not of the triangle.

Definition 19a An n-dimensional simplicial complex is regular if every one of its simplexes
belongs to the boundary of at least one n-simplex. Thus. a regular simplicial complex is a
collection of n-dimensional polyhedra and their boundaries and contains no isolated simplexes of
a lower dimension.

Figure 2.3: Point sets that are not simplicial complexes

Figure 2.4: An example of triangulation of a triangular prism, adapted from Munkres, Elements
of Algebraic Topology

Definition 20 A set E C R* is called triangulable if there exist a simplicial complex C' and
a homeomorphism & : |C| — E. The simplicial complex C is called a triangulation of E. See
Fig. 2.4 for an example.

It has been shown that any one, two, or three-manifold is triangulable [39]. Thus, triangulable
simplicial complexes encompass a fairly large class of objects of interest in solid modeling,.

An n-simplex A™ may be assigned two orientations. If we consider a permutation of its vertices
Fige-rosFing, With i; € {1,...,m 4+ 1}, 1 < j < n+1 and pairwise different, we may assign
the orientation sign according to the permutation index. It is recalled here, that a permutation
is classified according to the number of interchanges of successive elements required to restore
the original order, &,...,&n41. If the number of element interchanges is even, the permutation
is even, otherwise the permutation is odd. For example, in the case of a three element set,
permutations (&1, £2,73), (£a,£1, Z2), (F2, T3, 1), are even, whereas permutations (F1,Z3,),
(£2,%1,%3), (Fa3, %2, £1) are odd. A positive orientation corresponds to an even permutation of
the vertices and a negative orientation to an odd permutation. Fig. 2.5 depicts the two possible
orientations of a triangle (two-simplex). An n-simplex A" induces an orientation to any one of
its faces A7, j < n by omitting the vertices not contained in AJ, The orientation of the triangle
(Fig. 2.5) induces an orientation to its edges.

Definition 21 An n-dimensional simplicial complex is called orientable if all of its n-simplexes
can be oriented such that opposite orientations are induced to any {n—1)-dimensional face shared

10

' N

Positive orientation Negative orientation

Figure 2.5: Orientation of a two-simplex

by two n-simplexes.

Since every n-manifold with n < 3 is triangulable, we may define orientability of such manifolds in
terms of their triangulations. An n-manifold with = < 3 is orientable if one of its triangulations is
orientable. Examples of non-orientable manifolds are the Mobius strip (manifold-with-boundary)
and the Klein bottle [71, 75].

Definition 22 An open n-cell is a set homeomorphic to an open n-ball. A finite CW complex
or simply n-complex is a pair (X, (), where X is a Hausdorff topological space and a union of
a finite number of disjoint open cells, of dimension lower or equal to =, C = {¢;, 1 < ¢ < I} with
U1<£<E Ct = X., such that

1. for each open k-cell ¢;,, k < n, there exists a continuous function f; : B* — X that maps
B* onto ¢;, and 8(B*) onto a finite union of open cells of C each of dimension less than
k. If f; are homeomorphisms and the boundary of each cell is equal to a union of a finite
number of open cells of C, then (X, C) is called a regular C'W complex.

2. aset Y is closed in X if Y N¢; is closed in ¢l(c;) for each 1.

Finite CW complexes provide a generalization of the concept of simplicial complexes. All point
sets of Fig. 2.2 are CW complexes, whereas those of Fig. 2.3 are not.

An alternative definition, equivalent to the above definition, is the following:

Definition 22a An n-complex is a pair (X, (), where X is a Hausdorff topological space and C
a finite collection of open, disjoint cells, such that

1. for each cell ¢ € C, §(c) is a-union of elements of C and

2. for every ¢,d € C such that ¢l{¢) N cl(d) # @, then ¢l(c) N el(d) is a union of elements of C'.
Definition 23 A subdivided n-manifold is a pair (M,), where M is an n-manifold and (M,C') a

finite, regular CW complex. The pair (M, C) is also called an n-complex or n-manifold subdivision
or a subdivision of M.

11

Figure 2.6: Subdivision of a disc and its dual

Definition 24 Two n-manifold subdivisions (M, C),(N, D) are called equivalent if there is a
homeomorphism between M and N carrying k-dimensional cells onto k-dimensional cells.

Definition 25 For every pair of cells c,d € C such that ¢ C ¢l{(d), c is called a face of d. If, in
addition, ¢ # d, c is called a proper face of d.

Definition 26 Two cells are called incident if either of them is a proper face of the other. If
cl(c) N ¢l(d) # @ and none of them is a proper face of the other, the cells ¢, d are called adjacent.

Definition 27 The dual of an n-complex (M, C) is an n-complex (M,C*), for which a bijective
mapping f: C — C exists such that

1. if ¢ is a k-cell, then ¢* = f(c) is an (n — k)-cell and

2. if ¢,d are adjacent in C, then ¢*,d* are adjacent in C*.

Fig. 2.6 shows a subdivision of the plane (two-manifold). Vertices {0-cells) are described by
numbers, edges (1-cells) by small letters and 2-cells by capital letters. Cells A and a are incident,
while cells 4 and B are adjacent. The dual subdivision is illustrated in the same picture. Cells
dual to those of the primal subdivision are denoted by primed symbols. The dual subdivision is
constructed in a similar manner to that of a dual to a planar graph and is explained later in this
Section. The concept of dual manifold subdivision will be extended later to the dual complex.

Definition 28 A space X is connected if for any nonempty subsets A, B of X, such that X =
AU B, then cl(A)N B # @ or ANcl(B) # 0.

It can be proven that X is connected if and only if the only subsets that are both open and closed
are X and the empty set. Another condition for connectedness of a space may be formulated
through the path definition.

12

Figure 2.7: Genus of a torus

Definition 29 A path in X is a continuous function v : [0,1] — X. A space X is called path-
connected if any two of its points can be joined by a path. If the space X is path-connected it
can be proven that X is connected, but the converse is not always true [74].

Definition 30 Let € be an n-dimensional simplicial complex. Its Euler characteristic is defined
as

T

E€C) = (-1)e (2.16)

=0
where @; is the number of its i-dimensional simplexes. The Euler characteristic for surfaces, i.e.
point sets homeomorphic to two-dimensional complexes is very important in solid modeling.

Any polyhedron or simplicial complex or 2-complex homeomorphic to a 2-sphere has an Euler
characteristic equal to 2. Thus, by specializing (2.16) we obtain

V-E+F=2 (2.17)

where V', E, F are the number of vertices, edges and faces of the polyhedron, respectively.

Definition 30a The genus of a surface is the maximum number of closed curves that can be
drawn on the surface, so that any two points on it can be connected with a path which does not
CTOsS any curve.

Thus, the genus of a sphere is 0, the genus of a torus is 1, since neither curve a or b, Fig. 2.7,
divide the torus into two pieces. In general, an orientable surface is homeomorphic to a sphere
with a finite number of handles. For example, a torus is homeomorhpic to a sphere with one
handle.

Addition of a handle increases the genus of a surface by 1. The Euler characteristic of an orientable
surface is 2(1 — G), where G is the genus of the surface. For a polyhedron homeomorphic to a
sphere with G handles formula (2.17) becomes

V_E+F=201-G) (2.18)

13

We can extend the Euler formuia for polvhedra whose faces are bounded by more than one discon-
nected loops. A loop is a face boundary homeomorphic to a one- or zero-dimensional manifold.
Further, we may also consider polyhedra with multiple shells, i.e. disconnected boundaries which
are orientable manifolds themselves. If L is the number of loops and 5 the number of shells, the
Euler formuia becomes

V_-E+F-H=25-G) (2.19)

where H = L — F. Euler operators transform a polyhedron while maintaining the validity of eq.
(2.19).

A non-orientable configuration results if we cut a disk out of a sphere and replace it by a \M3bius
strip. The resulting surface is a closed manifold. which is called a projective plane or a sphere
with a crosscap. The Euler characteristic of a sphere with n crosscaps is 2 — n. Thus. for a
polyhedron homeomorphic to a sphere with n- crosscaps, the Euler formula becomes

VeE+F=2-n {2.20)

2.2 Graph Theoretical Concepts

Now, we are going to discuss a few graph theoretic concepts, [8. 45].

Definition 31 A simple graph or undirected graph is a pair (V, E'), where V is a set of vertices
and E a symmetrical, irrefiexive relationin V,i.e. £C V? such thatifz # y € V then(z.2) ¢ E
and (z,y) € £ — (y,z) € £. All vertices z, y such that (z,y) € £ are called adjacent.

The graph is usnally represented as a set of points where adjacent vertices are connected by edges
or arcs. An arc between vertices £ and y represents both adjacent pairs {z,y)and (y,z). Fig. 2.8is
a simple graph with V' = {1,2,3,4,5} and F = {(1,2),(2,1),(1,3),(5,1),(2,3),(83,2),(2,4),(4,2)
(27 5)’ (5! 2)‘ (3F 4)? (4" 3), (3? 5)’ (5‘3)}'

In a multigraph, two distinct vertices may be connected by rnore that one arc. A pseudograph is
a multigraph with loops, i.e. arcs on the same vertex.

Definition 32 A directed graph or digraph is a pair (V, E), where V is a set and E aa irreflexive
relation on V. The arcs on a digraph are drawn with an arrow indicating the directior from the
first to the second vertex in a pair (x,y) € E.

Definition 33 Two graphs (V, E),(V’, E') are called isomorphic if there exists a bijective map
f:V = V', which preserves adjacency.

Definition 34 A path of length & in a graph is a sequence of vertices {vy, vy ...vx, v441], such
that (v, vi41) € E,1 €1 < k.

Definition 35 A simple path is a path where no arc is encountered twice,
Definition 36 A cycle is a simple path with coinciding end points.

Definition 37 A graph is connected if there is always at least one path connecting any two
vertices.

14

5

Figure 2.8: A simple graph

Definition 38 A tree is a connected graph with no cycles. If n is the number of its vertices, then
the tree has exactly n — 1 arcs.

Definition 39 A graph is planar if an arrangement of its vertices on a plane exists, such that its
arcs can be drawn as curves not intersecting each other.

A planar graph partitions the plane into plane regions having arcs of the graph as boundaries.
A polyhedron P which is homeomorphic to a sphere can always be represented by a planar
graph (V,E). The vertices of this graph correspond to the vertices and its arcs to the edges
of the polyhedron. The representation is established by bijective functions fv : V(P) — V,
fg : E(P}— E, where V(P), E(P) are sets containing the vertices and edges of the polyhedron,
such that whenever vy, v; € V{(P) are connected by an edge e, then fr(e) = (fv(v1), fv(v2)) €
E(P). Fig. 2.9 shows the planar graph corresponding to an octahedron. The plane regions
generated by the edges of the associated graph correspond to the faces of the polyhedron. Face
fs, the exterior region, corresponds to the non-bounded planar region adjacent to arcs eg, €7, €9
and vertices v4, vs, vg. Euler’s formula in its simplest form, eq. (2.17), holds for a planar graph

v—e+ f=2 (2.21)

where v is the number of vertices, e the number of arcs and f the number of planar regions.

A graph can be embedded on a surface, if it can be drawn on the surface such that no edges cross
each other. A planar graph can always be embedded on a sphere. Any graph can be embedded
on a sphere with handles, one handle for each crossing pair of edges when the graph is drawn on
a plane. For any graph G there is an isomorphic graph Gg, which can be embedded on a sphere
with a minimum number of handles. This number, 7(G), is the genus of the graph and is equal
to the genus of the surface on which it is embedded.

Any planar graph has an associated dual (pseudo)graph. The dual is constructed by placing

15

V6
-1 e7
® Y|
al Vs
v @
ell
vi
@ 83
fivivevs . f5: vBvsv2 e o
f2:vivhvd fg: vbvdvs
f3:vivdav3 f7: vbv3v4
f4: viv3v2 f8: vev2v3

Figure 2.9: Octahedron and its planar graph

one vertex in each planar region inciuding the exterior region, and connecting each pair of those
vertices by one edge for every edge of the original graph at the boundary of the associated regions.
Dual edges cross the associated edges of the original graph at one point only. Fig. 2.10a shows
the graph of Fig. 2.9 and its dual. The vertices of the dual graph are unfilled circles and its edges
are drawn with thin lines. Fig. 2.10b also shows a planar graph, whose dual is a pseudograph.
The dual graph of a planar graph associated to a polyhedron P defines the dual poivhedron,
dual(P). The dual polyhedron is a simplicial complex homeomorphic to the spherical polyhedron
resulting after embedding of the dual graph on the sphere surface. The dual to the graph of Fig.
2.9 corresponds to a cube, hence a cube is dual to an octahedron.

To any n-complex, a graph showing all incidence relations between k and £ — 1 cells, 0 < k < n,
is associated. The vertices of this graph are all the faces of the complex. An arc connects two
incident & and & — 1 dimensional faces. Usually, all vertices of the graph corresponding to k-
dimensional faces are arranged on the same level. Fig. 2.11 shows the incidence graph of the
octahedron of Fig. 2.9.

The concept of the dual polyhedron may be extended to complexes. Each k-cell of a complex is
mapped to an (n — k)-cell of the dual. Incidence is preserved in the dual. The incidence graph of
the dual is the “inverted” incidence graph of the primal complex.

We conclude this section with the definition of hypergraphs [8].

Definition 40 A hypergraph is a pair V, E, where V is a set of vertices and £ = {E;, i € I} a
set of subsets of set V, E; CV, i€ I, where I is an index set. The sets E; are called hyperarcs.
Most definitions and structures on graphs may be extended to hypergraphs.

16

d their duals

2.10: Planar graphs an

Figure

Figure 2.11: Incidence graph of an octahedron

17

Chapter 3

Boundary Representation Modeling
Systems

In this section, we review some well known solid modeling systems. Each of them is characterized
according to the class of solids {modeling space) it may handle. The data structure and special
features of the system are described.

A distinction is made between Euler-based, non-manifold and abstract models. As mentioned
in the introduction, Euler-based systems are built on Euler operators, which modifv an object
incrementally, such that the Euler formula in one of its forms (egqs (2.17), (2.18}, (2.19)}) is
always valid. Non-Manifold models are capable of modeling non-manifold objects using special
compound topological elements or the complete incidence graph. Abstract models use a single
primitive structure and a limited set of constructors. The basic constructors and high level
operators built on top of them modify the modeled object such that it always belongs in the
topological class handled by the modeler.

3.1 FEuler-Based Systems

3.1.1 The Winged-Edge Structure

One of the first models was the winged-edge structure by Baumgart, [7]. The modeli g space
consists of oriented, manifold polyhedra with planar faces. We assume that all faces are ori-
ented consistently, as explained in the previous section. A diagram illustrating the winged-edge
structure is shown in Fig. 3.1.

The center piece of the winged-edge structure is the edge, e, which is oriented. Letter “n” stands
for next, “p” for previous, “cw"” for clockwise, “ccw™ for counterclockwise. Every edge is adjacent
to two faces, nface(e) and pface(e). Face nface(e) is the face, whose orientation induces on edge
e an orientation coinciding with the original edge orientation. i.e. from put(e) to nuvt(e). Face
pface(e} induces the opposite orientation to edge e. Edge ncw(e) is adjacent to nface(e) and
put(e), edge nccw(e) is adjacent to nface(e) and nvt(e). Edges pcw(e), pecw(e} are defined in an
analogous manner.

18

nface(e) e ptace(e)

pvi(e)

pcew(e)

Figure 3.1: The winged-edge structure

The data structure comprises four classes of nodes. The body node points to three circular lists,
the face, the edge and the vertex ring, containing all faces, edges and vertices of the polyhedron.
This node contains also pointers which assign the body a place in a hierarchical assembly of bodies
represented by a tree structure. The edge nodes contain pointers implementing the winged-edge
structure, pointers to the previous and the next edge of the circular edge list and data useful for
graphical display of the edge. The face node contains pointers to the next and the previous face
in the circular face list, a pointer to one of its bounding edges and information used by graphical
surface rendering algorithms. Finally, the vertex node contains pointers to the next and the
previous vertex in the circular vertex list, a pointer to one of its incident edges and geometrical
information.

The above data structure permits the reconstruction of all adjacency relations, i.e. constructing
ordered sets of edges around a face, vertices around a face, faces incident to a vertex, edges
incident to a vertex, edges adjacent to an edge, vertices and faces incident to an edge. Baumgart
also provides Euler operators for the construction of the polyhedron while obeying the Euler
formula, eq. (2.19) with the H term removed.

A system based on the winged edge structure is BUILD [11] developed at the Computer Labora-
tory of the University of Cambridge, UK, by Braid, Hillyard and Stroud. The winged edge data
structure is extended there to incorporate loops enabling modeling of multiply- connected faces.
Thus, nface(e) and pface(e) pointers in Fig. 3.1 point now to loops rather than faces. Loops
point in turn to associated faces.

By the addition of loops, the modeling space includes some non-manrifold conditions, such as two
distinct loops touching at one point. The modeler is based on a set of low-level Euler operators
maintaining the validity of eq. (2.19). A consistent naming convention for Euler operators is used,
for example mev (make edge and vertex) creates a vertex and the edge joining the new vertex and
an existing vertex, mekh (make an edge, kill hole loop) joins two vertices of two distinct loops by

19

el

el el

3 (b) {¢)

Figure 3.2: Plane models, adapted from Mintyld

an edge.

Valid objects may be represented as a point on a hyperplane obeying eq (2.19) in a 6-dimensional
space (V,E,F,H,G,S). An Euler operator may be represented by a six-tuple, whose elements are
the number of corresponding entities added to the object by the operator. For example, mev is
represented by the tuple (1,1,0,0,0,0). The vector in ®® normal to the hyperplane defined by eq.
(2.19) is vo = (1,-1,1,—1,2,-2). In [11] 2 set of five Euler operators is given, eopy, ..., eops,
which together with the above vector form a basis of the %° space. Therefore, any valid object may
be expressed in terms of the new basis as Ajeopy +. ..+ Aseops + Agvp, Where Ag = 0. Coefficients
M1, ..., As are integers indicating the number of times the corresponding basic operator should be
applied to construct the object.

High level operators include construction of planar shapes (lamina), sweeping operations for
the construction of a solid from lamina, swinging operations for the construction of a solid of
revolution by rotating lamina about a fixed axis, chamfering, i.e. replacing an edge or vertex by
a face and tweaking, which is a generalized sweep operator. The modeler is capable of handling
edges and faces with a non- planar geometry and provides high-level checking routines to detect
invalid shapes such as self-intersecting faces. After successful termination of the checking routines,
Boolean operations may be performed on solids. The original BUILD modeler evolved to the

ROMULTUS system.

Around the same time as Braid, Eastman, Weiler, Henrion, and Thornton [33, 35, 34] have
extended Baumgart's structure working independently. Their system, GLIDE, may also handle
loops and multiple shells.

20

*!

¥5 ¥l €l c2

F o LS v2 el 2

ob 13 vl ¥i ¥l

vd v3 (x]
(]
vl

() (b)

vl

Figure 3.3; Plane model of a pyramid, adapted from Mintvli

3.1.2 The Geometric Work Bench (GWB)

GWB [70, 69] is a polyhedral solid modeler developed by Mintyléd and Sulonen. The data structure
is built around the plane model of a two-manifold, which is a graph-based approach to represent
manifold structures, either orientable or non-orientable. In a plane model, each face is a directed,
labeled graph, whose vertices are labeled as the vertices incident to the face and whose arcs are
labeled as the edges incident to the face. Edges bearing the same label are topologically identified
in a manner consistent with their orientation. Fig. 3.2a shows the plane model of a torus. The
neighborhood of point P on edge « consists of the union of the two half disks around the instances
of this point on the identified edges. To build the torus, the rectangle is wrapped such that edges
a and 3 are brought in coincidence. Fig. 3.2b shows the plane model of a M&bius strip and Fig.
3.2c that of a Klein bottle. Fig. 3.3 shows the plane model of a pyramid.

A set of basic Euler operators for manipulating plane models are implemented in GWB. The data
structure for the description of topological relations uses a hierarchical scheme with the following
elements in decreasing order: solid, face, loop, half-edge, vertex. A solid node has pointers to a
doubly linked list of solids coexisiing in the same model and one pointer to each of three doubly
connected lists of its faces, half-edges, and vertices. Each face node has one pointer to its parent
solid, pointers to the previous and the next face in the face list, one pointer to a loop forming its
outer boundary and one pointer to a doubly-linked list of loops consisting of all internal loops of
the face. The face geometry is described by the four coefficients of the underlying plane equation.
The loop node has one pointer to its parent face, one pointer to one of the half-edges belonging
to its boundary and pointers to the next and the previous loop of the circular list containing the
loops of the parent face. Each edge may be thought as split in two halves, each half associated
with each loop the edge belongs to. Half-Edges forming a loop are arranged in a circular list.
In the case of a face bounding loop, the arrangement of half-edges is compatible with the face
orientation. A half-edge node contains a pointer to its parent loop, pointers to the previous and

21

next half-edge in the list, a pointer to its starting vertex in the direction of the loop and a pointer
to its partner half-edge. Edges are also arranged in a doubly-linked circular list. Each edge node
has pointers to the next and the previocus edge in the list and one pointer for each half-edge.
Finally, a vertex node has pointers to the next and previous vertex in the doubly-linked vertex
list and a pointer to a half-edge having this vertex as a starting vertex. Further, a vertex node
contains the homogeneous coordinates of the vertex. All adjacency relations may be reconstructed
from the above structure.

High level operators in GWB include polygonal approximations of simple curved shapes, transla-
tional and rotational sweeping operators, and a gluing operator, i.e. merging of two solids over a
common face, splitting a solid with a plane, slicing a portion of a solid and Boolean set operations
on solids. A transaction log feature enables revoking the last operation (undo feature) as well as
the implementation of an interrupt facility, which breaks an ongoing operation, such as a Boolean
operation, and restores the model to the starting configuration.

3.1.3 The Hierarchical Face Adjacency Hypergraph (HFAH)

The Hierarchical Face Adjacency Hypergraph (HFAH) [2, 27] is another modeler for oriented
two-manifold solids with curved, simply connected faces, developed by Ansaldi, De Floriani and
Falcidieno. While all the previous models discussed so far are edge-based, HFAH is face-based.
The model has two components, a hypergraph (FAH) and a tree representing a hierarchy of
FAH’s. The nodes (vertices) of the FAH are the faces of the polyhedron. For every edge, simple
arcs connect face nodes having a common edge. All face nodes incident to a vertex are connected
by a hyperarc. Arcs and hyperarcs incident to any face of the FAH are organized in an ordered
sequence reflecting the ordering of edges and vertices in the loops of the face. Further, the nodes
of a hyperarc are organized into an ordered sequence reflecting the ordering of faces around the
vertex corresponding to the hyperarc. Further, arcs are labeled with the vertices of the edge and
the loops containing the edge. If the face boundary consists of more than one loop, the arcs
incident to the face are organized into distinct sequences, one for each loop.

The tree component of the HFAH models a hierarchy of FAH’s, where each FAH represents a
feature of the body, such as a depression, cavity, through-hole or protrusion. The root of the tree
is a rough model of the body stripped of details of the above kind. Child nodes contain FAH’s
modeling features, which may in turn contain subfeatures, and so on. At the branches of the
tree, parent-child relations are stored consisting of a mapping between associated vertices of the
respective FAH’s. This information is used to construct a new FAH of the body with the feature
added. The procedure of inserting a feature in its parent node’s FAH is called refinemeni. Details
of the refinement algorithm are given in [27). The inverse procedure, i.e. selecting a subgraph of
a FAH, transforming the FAH and the subgraph and constructing the appropriate parent-child
relationship, which is called an abstraction transformation, is also implemented.

Modeling a body in terms of a FAH representing its global shape and features by FAH’s ar-
ranged in a hierarchical tree reflects the process followed by designers. The above model enables
interrogating an object at various levels of abstraction. Unnecessary detail is hidden but may
be recalled when needed. Low level Euler operators operating mainly on the faces of the object
as well as high level operators, such as translational sweep, face glue and chamfering have been
implemented [2].

22

3.1.4 Other Models

In [118], a data structure for two-manifold polyhedra having linear storage complexity with respect
to the number of edges has been developed by Woo and Wolter. Further, the access time to find
all adjacencies of one vertex, edge or face is linear on the average. The data structure contains
two incidence relationships. The first relationship is V — E, which associates to a vertex the
list of edges adjacent to it and the second is FF — E, which associates to a face the list of its
incident edges. In the structure, a vertex node contains the vertex coordinates and an ordered list
of edge cells associated to its adjacent edges. Each edge cell contains one pointer to each incident
vertex node, one pointer to each adjacent face node and one pointer to its geometry, a total of
five pointers. The structure of a face node is analogous to that of a vertex node. In [118], it is
shown that in a two-manifold polyhedron, the average number of edges adjacent to any vertex
or face is 6. The linear storage complexity of the data structure follows from the above assertion
and the fact that the numbers of faces, edges and vertices in a polyhedron are of the same order
as implied by Euler’s formula.

In [117], an analysis of the storage and time complexity of several boundary representation struc-
tures for two-manifold polyhedra is performed by Woo. It is shown there that all valid boundary
representation structures have a linear storage complexity with respect to the number of edges of
the polyhedron. The time complexity of algorithms for the reconstruction of all nine adjacency
relationships between faces, edges and vertices varies between linear with respect to the number
of edges and constant. One extreme of the scale is occupied by a data structure incorporating
the £E — V and F — F relationships, i.e. only the vertices and faces adjacent to each edge. Its
storage complexity is O(4E) and the time complexity to produce all nine adjacency relationships
is O(7TF). On the other extreme a data structure including all nine adjacency relationships is
found. Its storage complexity is O(20F) and its time complexity is constant. The winged-edge
structure has an Q(9F) storage complexity and an O(6EV; + 3k) time complexity, where EV;
is the number of edges adjacent to a vertex, 6 in the average, and k is a constant time unit for
direct access of a node in the data structure. The maximum of EV; is encountered in a pyramid
with E/2 edges adjacent to its apex and the minimum in a tetrahedron with 3 edges per ver-
tex. A better data structure in terms of storage and time complexity is proposed, the symmetric
data siructure, which in addition to the £ — V and E — F adjacency relationships contains
the V — FE relationship, i.e. a list of edges adjacent to each vertex. Its storage complexity is
O(8E) and its time complexity Q(5EV; + 4k). However, as it is pointed out in [117], the time
complexity was calculated on the basis of the assumption that the frequencies of all query types
are equal, which is not always true. Therefore, the application in hand should be analyzed first
before deciding to use a specific data structure,

DESIGNBASE [23] is a solid modeler developed by Chiyokura, which uses a variant of the winged-
edge structure. The modeling space is the same as in [11], i.e. two-manifold solids as far as
topology is concerned. Curved geometry is supported. Faces do not appear explicitly in the data
structure. They are represented by P-loops (parent-loops), a loop forming the face boundary and
C-loops (child loops), internal loops of the face.

The data structure is relatively simple, consisting of four nodes. The solid node maintains a list
of edges, loops and vertices. Many solid nodes may coexist in the same model. A loop node
contains a pointer to one of its edges. If it is a P-loop, it contains a pointer to one of its C-loops.

23

If it is a C-loop, it contains a pointer to its parent P-loop and to the next C-loop in the C-loop
list. An edge node implements a subset of the winged-edge structure. Only the pecw(e), necw(e),
put(e) and novt(e) pointers appear (Fig. 3.1). The nface(e) and pfacefe) pointers are replaced by
pointers to the associated P-loops. The reduction of the original winged-edge structure speeds
up updating operations but poses some restrictions on the modeling space. Thus, sell-loops, i.e.
edges with a single vertex are not allowed. Finally, the vertex node has a pointer to one of its
adjacent edges.

In DESIGNBASE, a set of Euler operators has been implemented. High level operators include
sweeps, rotations, gluing, mirroring, splitting and Boolean operators. Incorporation of curved
edges and faces is done by special operators. Rounding and filleting have received special attention
[22]. Gregory patches described by a control polyhedron are used as the curved surface primitive
[24]. However, Boolean operators for curved surface configurations are not fully implemented
yet. The user interface is CSG-like, i.e. it lets the user operate with volumes and produce local
modifications by high-level operators.

Another solid modeler for objects bounded by free-form surfaces, Geomap-III, has been developed
by Kimura [56]. The usual hierarchy of topological entities, ranging from solids to vertices is used
in its internal object representation. Surfaces can be defined by curve meshes of an arbitrary
topology. Operators for local shape modification (glue, drill, sweep, swing, round) have been
implemented in Geomap-III. Shape definition by Boolean set operators is also possible.

Weiler (108, 112, 110, 109] was the first to present a data structure for the representation of non-
manifold, three-dimensional objects. In his work, Weiler deals with both two-manifold polyhedra
with curved surfaces and non-manifold objects. The non-manifold data structure is discussed
in the next subsection. The manifold objects allow self-loops, more than one edge between two
vertices and multiple shells. Thus, adjacency relationships of each shell can be represented by a
pseundograph.

Several boundary representation structures for objects without loops and multiple shells but
allowing self-loops and more than one edge between the same pair of vertices are investigated
for topological sufficiency. Sufficient data structures involving one incidence relationship are the
following;:

e the V < E > structure, consisting of the vertex-edge incidence relationship, i.e. a circular
list of edges around each vertex. Faces are constructed by embedding the adjacency graph
on a two-manifold surface.

s the E{< E >}? structure, where each edge is associated with two ordered lists containing
the edges around each one of the two vertices of each edge.

e the F' < E > structure, consisting of the face-edge adjacency relationship, i.e. a cyclicly
ordered list of edges around each face, consistent with face orientation.

All three above sufficient structures involve edges in their adjacency relationships. Pairs of
the remaining adjacency relationships have also been investigated for sufficiency, but none was
found sufficient. Further, Weiler investigated various edge-based data structures for two-manifold
Boundary Representation. First, structures for polyhedra with self-loop edges and more than
one edge between the same two vertices but not allowing loops and multiple shells are presented.

24

All data structures discussed below are edge-based, i.e. edges are the key for reconstructing all
adjacency relationships and thus demonstrating topological sufficiency.

A common, support structure consists of a shell node pointing to one of its faces, a face node
pointing to one of its bounding edges or a vertex if it consists of a single vertex. Faces are
arranged in a circular list and each face node has, in addition, one pointer to the next and one
pointer to the previous face in the list. Finally, there is a vertex pointer containing only the
vertex coordinates and other data not related to topology. Geometrical information pertaining
to faces and edges is stored at appropriate locations in the respective nodes.

Topological Sufficiency of the winged-edge structure [7] is demonstrated in [112] based on a
theorem by Edmonds [36]. This structure is enhanced by adding new information to the ncw(e),
nccw(e), pew(e), pecw(e) fields (Fig. 3.1) indicating which side of the adjacent edge is pointed at.
This improves efficiency of interrogation algorithms in curved geometry environments.

Another data structure is the vertex-edge structure. In this structure, each edge is represented by
two nodes, each node corresponding to each one of its edgeuses. Each edgeuse is associated with
each one of the vertices incident to the edge. Information stored in one edgeuse node comprises a
pointer to the associated vertex and two pointers to the edges adjacent to the associated vertex
as in the winged-edge structure, i.e. either (nccw(e), pcw(e)) or (new(e), pccw(e)), see Fig. 3.1.
Further information stored in an edgeuse node includes a pointer to one of the adjacent faces and
a pointer to the mate edgeuse. Sufficiency of this data structure is also demonstrated.

In the face-edge structure each edgeuse is associated with one adjacent face. This data structure
is the dual of the previous one. Each edgeuse node contains one pointer for the previous and one
pointer for the next edge around its adjacent face’s bounding loop. More specifically, one edgeuse
contains the pair {(pcw(e), pecw(e))} and the other edgeuse the pair (ncw(e), necw(e)), Fig. 3.1.
The edgeuse points also to the other face than the one used to construct the previous pointer
pair. Finally, there are pointers to one of the edge vertices and the mate edgeuse pointer. This
data structure is also sufficient.

Edgeuses in the above data structures make interrogation algorithms more efficient and sufficiency
proofs simpler. These data structures are extended to account for loops, multiple shells and
regions. Loops may consist of an ordered edge list or a single vertex. Loops of the same face are
arranged in a linear list. Shells are distinct three-dimensional solids bounded by a closed surface
composed of faces, while regions are bounded or unbounded point sets of £, where each region
may enclose one or several shells.

A loop node is added to the data structure, with a pointer to one of its edges or its single vertex,
and another pointer to the next loop in the loop list. Further, the face node has a pointer to
one of the loops in its loop list. In the previous data structures, all face pointers are replaced
by appropriate loop pointers conforming to the hierarchical approach in B-rep, which requires
the maintenance of incidence relationships between elements from higher to lower dimensions.
Multiple shells can be arranged in a list or a tree implementing shell containment relationships
[35] in a manner similar to the HFAH [2], described previously. A set of basic Euler operators
maintaining the validity of eq. (2.19) has been implemented. In {35], the construction of higher
level operators based on Euler operators is described.

Wilson {115] makes a detailed account of Euler formulas for wireframe objects which consist
of vertices, edges and loops, and polyhedral objects. He also provides a complete set of Euler

25

operators for wireframe objects. In [114], an experimental neutral file format for transfer of models
based on the B-rep representation is given. Topological information is encoded via incidence
graphs having the basic entities (vertices, edges, loops, faces, shells) as nodes. Problems related
to translation of topological structures from the neutral to a specific solid modeler’s internal
format and vice-versa are also discussed.

3.2 Data Structures for Non-Manifold Objects

During the last eight years some important contributions in data structures for non-manifold
subdivisions have appeared. Examples of non-manifold configurations are dangling edges and
faces, more than two faces meeting at the same edge, wire edges such as symmetry axes, faces
touching at one point, etc. Non-Manifold modeling has broadened the scope of solid modeling to
applications such as:

e coexistence of wireframe, surface and solid representation models;

e the same model can be used for finite element discretization and direct communication of
the finite element analysis results to the original model;

¢ modeling of composite objects and representation of interior structures is incorporated in
the same model; and,

e Boolean operators are closed in a non-manifold domain, therefore no need for regularization
procedures exists.

There are some restrictions on the topology of the objects, which can be handled by the non-
manifold models. Self-intersections of faces and edges are not allowed. Faces themselves should
be bounded, manifold and homeomorphic to a planar shape. Thus, all non-manifold conditions
occur at face boundaries and the genus may be inferred by topological information only. Shells
are not allowed to intersect. Edges intersect faces only at their boundaries. In general, two
topological elements may intersect each other along an element at least one level lower in the
hierarchy than the lowest of these elements.

3.2.1 The Radial-Edge Structure

We continue here the review of Weiler’s work with a description of the radial-edge structure. The
major contribution of Weiler’s thesis is a model for description of three-dimensional non-manifold
topologies [112, 110, 109)] using the radial-edge structure. There are certain restrictions on the
topology of the objects, which can be handled by the radial-edge structure. Self-intersections of
faces and edges are not allowed. Faces themselves should be finite, manifold and homeomorphic
to a planar shape. Thus, all non-manifold conditions occur at face boundaries and the genus may
be inferred by topological information only. Shells are not allowed to intersect. Edges intersect
faces only at their boundaries. In general, two topological elements of the same dimension may
intersect each other along an element of a lower dimension. If, however, two topological elements
of different dimensions intersect each other, then they are either incident or they intersect in an

26

element of a lower dimension than the lowest of their dimensions. The hierarchy of topological
elements is models, regions, shells, faces, loops, edges, and vertices. Additional elements that
are used in the radial-edge structure are the faceuse, the loopuse, the edgeuse and the vertexuse.
The faceuse represents the use of a face by a shell and carries an orientation consistent with the
orientation of the shell containing the associated face on its boundary. Loopuses and edgeuses are
likewise oriented consistently with the orientation of the parent faceuse or loopuse, respectively.
An edgeuse may appear in a wireframe, where it is associated with each one of its vertices. A
vertexuse is normally associated with an edgeuse. It may be associated with a loopuse or shell
in degenerate loop and shell structures. Although the incorporation of uses in the radial-edge
structure increases storage requirements, they facilitate traversals of the topological structure.

The radial-edge structure for a non-manifold subdivision consists of several circular lists, pointers
from the top to the bottom in the hierarchy of elements and special arrangements of pointers
in situations where several faces meet at an edge or several edges meets at a vertex. On top of
the data structure is a pointer to one node of the circular model list. The model node points to
the previous and the next model node of the circular model list and to one region of its circular
region list. A region node points to the parent model node, the previous and the next region
node in the circular region list and one shell of its circular shell list. The shell node points to
its parent region node, the previous and the next shell node in the circular shell list, and to one
node of the circular list composed of the shells’ incident topological elements. These can be either
faceuses, edgeuses or a single vertexuse. A face node points to one of its faceuse nodes and to
a node, where geometrical information pertaining to the face is stored. The faceuse node has a
pointer to the parent shell node, a pointer to the next and a pointer to the previous faceuse of
a circular list of faceuses owned by the parent shell, a pointer to the mate faceuse, a pointer to
one of its loopuses, a pointer to its parent face node and additional geometrical information. The
absence of a pointer from a face node to a shell node should be noted. This occurs because a
shell is bounded by faceuses, not faces. There are exactly two faceuses for each face, each one
having an orientation opposite to the other. Each of two shells adjacent at a common face owns
one of the faceuses. The loop node contains a pointer to one of its loopuses and geometrical
information. The loopuse pointer contains a pointer to its parent faceuse node, a pointer to the
mate loopuse node owned by the mate of the parent faceuse node, a pointer to the previous and
the next loopuse of the circular loopuse list owned by the parent faceuse, a pointer to one of
its edgeuses or to its vertexuse in case of a degenerate loop consisting of one vertex only and
additional geometrical information. An edge node consists of a pointer to one of its edgeuses and
geometrical data.

To visualize the structure of an edgeuse pointer we depict in Fig. 3.4 a non-manifold configuration,
where several faces share a common edge. Faces are arranged in a radial ordering around the
common edge. Each face is decomposed into two faceuses and each faceuse owns an instance of
the same edge, i.e. an edgeuse. Edgeuses which are instances of the same edge are arranged in
a circular list, where each edgeuse points to its mate edgeuse and the next edgeuse owned by an
adjacent faceuse in the radial ordering. It is apparent that the number of edgeuses with the same
parent edge is always even. Thus, an edgeuse node contains a pointer to an appropriate vertexuse
in a manner consistent with the edgeuse orientation, a pointer to the mate edgeuse owned by the
mate faceuse as shown in Fig. 3.4 or the other edgeuse in case of a wire edge, a pointer to the
associated edge node and additional geometrical and orientation data. Further, if the edgeuse is

27

Figure 3.4: Faces sharing an edge in the radial-edge structure, adapted from Weiler

owned by a shell node in the degenerate case, the edgeuse node contains a pointer to it. In the
normal case, there is a pointer to the owning loopuse, a pointer to the next and previous edgeuses
of the circular edgeuse list belonging to the owning loopuse, and finally a pointer to the radially
adjacent edgeuse (Fig. 3.4).

The vertex node contains a pointer to one of its vertexuses and geometrical information. In Fig.
3.5 a non-manifold situation is shown, where one vertex is owned by many edges in a wireframe.
Vertexuses. i.e. instances of the same vertex are arranged in a circular list, where each vertexuse
points to one of the adjacent edgeuses. In this case faceuses are absent, so the edgeuses are two
instances of an edge, each associated with one of its vertices { vertexuses). The vertexuse contains
a pointer to the previous and the next vertexuse node of the above circular list, a pointer to its
parent vertex node, a pointer to either a parent shell or loopuse in degenerate cases, otherwise a
pointer to its owning edgeuse, and additional geometrical information.

Geometrical information stored in an edge node may contain its parametric equation in the three-
dimensional space, whereas geometrical information stored in one of its edgeuse nodes may be
the equation of the edge in the owning face’s parameter space. Similarly, geometrical information
stored in a vertex node consists of its coordinates in a global system, whereas a vertexuse may
contain the parameter value of the vertex in the parametric equation of its parent edgeuse.

In [112], sufficiency of the radial-edge structure is discussed. The issue of topological sufficiency
of non-manifold data structures is still open. Further, traversal algorithms in the adjacency graph
are given in [112]. A set of manifold and non-manifold Euler-like operators has been implemented
in [112]. In [111], the construction of a generalized sweep operator is described based on the
radial-edge data structure.

28

ouvuptr
vusuptr

vunext

_!u, *ts /wn.plr v, ‘{“‘ —

e——=0o0-—@--

N A

Figure 3.5: Edges sharing a vertex in the radial-edge structure, adapted from Weiler

3.2.2 The Tri-Cyclic Cusp Structure

Another data structure for non-manifold subdivisions is the fri-cyclic-cusp structure developed
by Gursoz, Choi and Prinz [25, 43}. This structure is vertex-based and resolves ambiguities that
may arise at a vertex with several adjacent faces touching at this vertex. The modeling space is
composed of finite non-manifold solids with non-intersecting edges and faces as in [112). Euler
operators were not implemented in this model. Specific constructors and some Boolean operators
are used instead.

The basic elements are vertex, edge, face, shell, region, wall, zone, disk, cusp, loop and edge-
orientation. The hierarchy of these elements and relations between them in the tri-cyclic-cusp
data structure are illustrated in Fig. 3.6. The first five of them have a meaning similar to the
respective elements in the radial-edge structure. The wall is one of the two oriented sides of a
face and is equivalent to the faceuse. An edge-orientation is one of the two possible orientations
of an edge defined by an ordering of adjacent vertices. A zone is a three-dimensional local region
around a vertex bounded by surfaces homeomorphic to conical surfaces with their apex at the
vertex. Dangling faces and wire edges may belong to the boundary of a zone. A disk is the
boundary of a zone. A conical surface adjacent to a vertex has two disks associated with it, one
at the inside and one at the outside. Dangling faces and wire edges have only one disk. A cusp
is the lowest element in the hierarchy, Fig. 3.6. It represents the use of a vertex and its adjacent
edge in a loop bounding a wall. We may imagine a cusp as consisting of the intersection of a
spherical neighborhood of the vertex with a wall of the face and the interior of the associated
edge-orientation, i.e. the one not including the other vertex. The mate cusp involves the mate
wall and the same vertex (Fig. 3.7). Isolated vertices and wire edges have no mate cusps. A disk
adjacent to a vertex may thus be represented as a collection of cusps. A loop is a eyclic list of
cusps with ordering consistent to the wall orientation. If the loop bounds a face, it has a mate
loop, which is the border of the mate wall.

29

GoO— (D

OO

OG0

Co-orCD)
=D

-

LEGEND

Listof A forms 8

Cvclic list of A forms B

Two madng As form B

Single A forms B (Special Case)
Point Se1 Element

Topalogical Support Element

/'

(. m“E) Cortniamos) (_waw)

Figure 3.6: The tri-cyclic-cusp data structure, adapted from Gursoz

Figure 3.7: Cusp definition, adapted from Choi

30

Figure 3.8: Edge-Orientation cycle, adapted from Gursoz

As it is implied by its name, the main element of tri-cyclic-cusp data structure is a set of three
circular lists around each cusp. The disc-cycle is an ordered list of cusps forming a disc around a
vertex. This cycle describes the arrangement of walls at the boundary of a zone around a vertex.
The edge-orientation cycle is a circular list of cusps arranged around an edge orientation. QOnly
cusps associated with the first vertex implied by the edge orientation are contained in the edge-
orientation cycle. This cycle represents the topology in a situation similar to that of Fig, 3.4 in
a different manner (Fig. 3.8). Two edge-orientation cycles are needed to describe local topology
around the common edge. Traversal is made possible by navigating through each cycle and using
the mate edge-orientation relationship. Finally, the loop cycle is a cyclic group of cusps around
a loop consistent with the underlying wall orientation.

The remaining elements of the structure may be easily obtained from Fig. 3.6. A zone is a list of
disks. One zone may contain more than one disk in a configuration, where one or more conical
surfaces are contained in another. The neighborhood of a vertex is described by a list of zones.
The two possible edge orientations point to the parent edge. The two walls of a face point to it
in the general case, whereas a wire edge or an isolated vertex is adjacent to a single, unoriented
wall. A shell is bounded by a list of walls and a region encloses a list of shells. Finally, a model is
the root of the hierarchical structure and incorporates all elements of an object. Several models
may coexist in the same modeling environment. Pointer associations not captured in Fig. 3.6 are
between a cusp, an edge-orientation, a loop, a wall and their mates.

In [25], point set operators, such as the closure, complement, union. intersection, difference, dis-
joint and purge for non-manifold point sets are defined. The disjoint operator builds a partition of
a group of ohjects to subgroups, where the elements of each subgroup are disjoint from elements
of other subgroups. The purge operator purifies a group of elements by removing lower dimen-
stonal elements (such as an isolated vertex or a dangling edge on a face). In [44, 25] a general
intersection algorithm for non-manifold boundary models in a linear geometry environment is
described. NOODLES [42] is a modeler implemented on top of the tri-cyclic-cusp data structure.

31

In its original version, objects with linear edges and planar faces could be handled. Recently, it
is being extended to incorporate curved geometry environments {19, 20].

3.2.3 Selective Geometric Complexes (SGC)

Rossignac and O’Connor [94] developed a model for describing non-manifold subdivisions in
n dimensions. QObjects called Selective Geometric Complexes (SGC) are used to model the
subdivision. These are collections of open, connected cells exhibiting a structure similar to that
of CW-complexes. Cells are allowed to have internal cracks represented by isolated cells of lower
dimensions. All configurations discussed in the radial-edge data structure and the tri-cyclic-cusp
structure may be modeled by SGC’s. The data structure used for describing SGC’s is graph based.
Boolean operators and other transformations of non-manifold subdivisions may be expressed in
terms of three basic operators, subdivision, selection and simplification.

To summarize the theory behind SGC’s, some additional mathematical definitions are in order.
A real algebraic variety, or simply variety in R" is the locus of the real roots of a finite number
of polynomials in n variables with real coefficients. For example, a plane defined by the equation
@12 + a2y + asz + a4 = 0, a cylinder with equation z? + 3> — a®> = 0, and a cone given by
z? + y? — 2% = 0 are all varieties in R3. The intersection curve between two cylinders of different
radii expressed as algebraics is also a variety in ®3. A subset V of a variety W, which is also a
variety is called a subvariety of W. If V is a proper subset of W, it is called a proper subvariety
of W. A variety is called reducible if it may be expressed as a union of more than one proper
subvarieties, otherwise it is an irreducible variety. All varieties given above, i.e. the plane, the
cylinder and the cone are irreducible. The intersection between the cone and the plane z = 0
passing through its apex is a reducible variety. Its proper subvarieties are the straight lines
z=0,y+z=0andz=0,y—2=10.

Let S be the set of singular points of a variety, such as cusps, self-crossings and isolated lower
dimensional pieces. Further, let R = V — S be the set of regular points of a variety. R is a smooth
manifold which can be decomposed in a finite number of open, connected components, the extents
of the variety. The dimension of the variety is equal to the dimension of R. Similarly, § may
be expressed as the union of connected subsets of extents of lower dimensional varieties. Thus, a
manifold decomposition of variety V' may be constructed. In general, a manifold decomposition
of variety V is a finite set M of connected manifolds, such that for any manifold M ¢ M, &M
is a union of elements of M. The plane is a variety of dimension 2 consisting of only one extent.
The intersection of two cylinders is a variety of dimension 1 consisting of two extents, the two
segments of the intersection. The manifold decomposition of the cone consists of three elements,
the apex and the two segments of the conical surface.

A cell is a connected, open subset of an extent. The unique irreducible variety and the extent
to which the cell belongs are denoted by c.variety and c.extent, respectively. A cell is allowed to
enclose isolated cells of a lower dimension, which do not belong to its point set, such as a surface
with isolated vertices or cracks. For example, consider the cone defined previously and the circle
22 + y2 — 1 = 0. The subset of the conical surface bounded by this circle and the apex is a cell
according to the above definition. The circle and the apex do not belong to its point set. Thus,

a cell of an n-dimensional extent may not be homeomorphic to the ball Br. This is the main
difference between cells of a CW-complex and cells of a geometrical complex defined as follows:

32

A geometric complex or simply complex K is a finite collection of cells (¢;);es such that
1. Vi,j€J withi# j,e;Nec; =0
2. the boundary of each cell ¢ is a union of cells of K, i.e. d¢ = [J;ej¢;

3. For the above cells ¢; € dc either ¢; C c.extent or ¢; Nc.extent =0

The collections of cells ¢; as in the above definition is denoted by c.boundary. Further, ¢ star
is the collection of all cells of the complex containing c¢ in their boundary. Thus, for any cells
be € K , b € choundary iff ¢ € b.star. Both operators, boundary and star define transitive
relations in the geometric complex K. The dimension of a cell, ¢.dimension, is the dimension of
c.extent. For example, let a be the apex of the cone, s the cell forming part of the conical surface
as defined above, ¢ the circular boundary of cell s and d the open disk bounded by c¢. The set
K = {a,s,¢,d} is a geometric complex. The boundary of cell s is s.boundary = {a,c}. We may
easily see that ¢ € s.extent but a N s.extent = §. Similarly, d.boundary = {¢} and ¢ € d.extent.
Further, c.star = {s,d} and a.star = {s}.

Two complexes A, B are equal if they consist of the same collection of cells, i.e. Ya € A,3b e B
such that @ = b. Two complexes A, B are called compatible if Vo € A,Vb € B,a Nb# 0 — a=0b.
The lowest row of Fig. 3.11 shows two compatible complexes. A complex A is called a refinement
of complex B if each cell of B is a union of cells of A. It is obvious, that the point sets of
complexes A, B are equal. In view of the above definition, every complex is a refinement of itself.
A complex A is called a proper refinement of complex B if A is a refinement of B and A is not
equal to B.

A cell b is called a regular boundary of cell ¢ if ¢ € b.star and c.dimension = b.dimension + 1. A
neighborhood relation may be defined for a pair of cells, where one of them is a regular boundary
of the other, denoted by b.neighborhood(c). This may have one of three values, left, right or full.
The value full indicates a cell contained in the interior of the closure of its incident cell, such as
a crack in the form of the curve located in the interior of a surface patch. If cell 4 is a subset of
dc, the neighborhood relation may he defined in terms of the orientation of their varieties. For
example, if a linear variety is a parametric curve, it is inherently oriented. A cell on this variety is
a segment on the curve with no self-intersections and its boundary consists of its end points. The
neighborhood of the vertex corresponding to the lowest parameter value has a neighborhood value
equal to left, the vertex corresponding to the highest parameter value a neighborhood value equal
to right. If this segment is a proper boundary of a face, the value of the neighborhood relation
may be obtained by comparing the direction of the segment and the orientation of the face. For
example, in the geometric complex of Fig. 3.9 ef.neighborhood(ft) = left, e2.neighborhood(f1)} =
left, e4.neighborhood(f1) = right. The neighborhood of a face at the boundary of a shell may be
defined by examining whether the normal vector to the face, whose direction is consistent with
the face orientation, points into the shell interior.

A Selective Geormetric Complex, O, is composed of a complex, O.compler and a set of attributes
attached to each cell of the complex. One important binary attribute is the active attribute,
which if set FALSE signals that the cell should not be included in the SGC. Thus, the point set
of an SGC is the union of the point sets of its cells, whose active attribute has a value equal to
TRUE. For example, if ¢ is a line segment and c.active = FALSE, ¢ models a crack not included
in the point set of the SGC.

33

V1

Figure 3.9: Two-dimensional geometric complex. adapted from Rossignac

The data structure for an unambiguous description of an SGC may implement one or more of
three substructures,

1. boundaryv and star links between cells,
2. a set of references to all cells of the complex having the same dimesnsion, and

3. a sat of references to all cells belonging to the same variety or extents.

In [94], only the first substructure is considered. The data structure envisaged captures all
boundary and star links with neighborhood information. Every cell ¢ of the SGC is a node with
a pointer to its extent and two lists, bdry and star, representing its boundary and star links,
respectively. The bdry list is a list of unordered lists, where each of them contains boundary cells
of the same dimension contained in c.boundary. Similarly, the star list is a set of unordered lists,
each containing higher dimensional cells than ¢ having the same dimension and belonging to c.star.
The neighborhood relation is stored in the sublist containing cells of dimension ¢.dimension+1.
The elements of this sublist are pairs consisting of a cell incident to ¢ and the neighborhood
relation between cell ¢ and this cell. Additional information stored at the node is the dimension
of the cell and its active and other attributes.

Fig. 3.0 shows a complex with 15 cells, i.e. 2 faces, 7 edges and 6 vertices. The pertaining nodes,
and some of the information stored in them is as follows:

FACES

F1 : ext=plane, bdry=< <E2,E6,E4>,<Vi, V3,V4,V6> >
F2 : ext=plane, bdry=< <E7,E2,E5>,<V1,V4,V3> >
EDGES

El : ext=lins, bdry=< <V2,V3> >

34

Figure 3.10: Adjacency graph of complex, adapted from Rossignac

E2 : ext=line, bdry=< <V3,V4> >, star = < (F1,L),(F2,R) > '
E3 : ext=line, bdry=< <V4,V5> >

E4 : ext=cirl, bdry=< <V3,V1> >, star = < (F1,R) >

ES : ext=cirl, bdry=< <V1,V3> >, star = < (F2,R} >

E6 : ext=cir2, bdrya< <V4,Vi> >, star = < (Fi,L) >

ET : ext=cir2, bdry=< <V1i,V4>» >, star = < (F2,L) >

VERTICES
Vi : ext=pti, star=< <(E4,R),(E5,L),(E6,L),.(E7,R)>,<F1,F2> >
V2 : ext=pt2, star=< (Ei,R) >

V3 : ext=pt3, star=< <{(Ei,L),(E2,L),(E4,L),(E5,R)>,<F1,F2> >
V4 : ext=pt4, stars< <(E2,R}),(E3,L),{(E6,R),(E7,L)>,<F1,F2> >
V5 : ext=pt5, star=< (E3,R) >

V6 : ext=pt6, star=< <F1> >

Fig. 3.10 shows the incidence graph of the complex, whose arcs connecting nodes of dimensions
differing more than one are drawn with dotted lines. Solid arcs are labeled with the value of
the neighborhood relation. It may be observed that some adjacency relationships captured in
the data structure, such as those represented by the arcs (F2,V4), (F1,V4), (F1,V1), (F1,V3) are
redundant, since they may be deduced by face-edge and edge-vertex incidence relations present in
the graph. However, if the pair (F1,V6) were missing from the data structure, the complex would
be ambiguous and geometrical information would be necessary to place vertex V6 correctly.

Three basic high level operators are defined in [94], subdivision, selection and simplification. These
enable the implementation of any high level operator such as Boolean operators and interrogations,
as any operator can be written in terms of the above three basic operators.

Subdivision takes as input parameters two geometric complexes A, B and produces refinements
A’, B' respectively, such that A’, B’ are compatible. The subdivision operator is implemented by

35

Figure 3.11: Refinement of a complex by subdivisicn, adapted from Rossignac

an algorithm that makes all cells of A of dimension & compatible with all cells of B of dimension
< k — 1 and vice-versa starting with & = 1, i.e. subdivision of edges by vertices. Then, cells of
dimension £ in both A and B are subdivided at their common intersections. Fig. 3.11 shows
the successive refinements of two two-dimensional complexes obtained by applying the above
algorithm.

The selection operator merges several compatible complexes by deactivating common cells, Se-
lection may be also applied to a single complex to sort out multiple occurrences of the same cell.
The algorithm for establishing whether a cell ¢ of a complex A is also a cell of complex B classifies
one internal point of cell ¢ against all cells of B. If this point is also an internal point of a cell b
of B, then ceils a, b must be identical since complexes A, B are compatible. All adjacency graphs
are merged into one graph with multiple cells removed.

The simplification operator computes a new complex A’ having the same point set as input
complex A but as few cells as possible. This operator is implemented by application of three
primitive operators, Drop, Join and Incorporate. The Drop operator removes all inactive cells
of complex 4. The Join operator removes an external boundary cell between two cells having
the same extent provided that all three cells are active. The Incorporate operator removes an
interior boundary cell by merging it to the unique cell that bounds it, provided that both cells
are active. The output of the simplification operator is a simple cell, i.e. a cell for which no
proper refinement may be constructed. Fig. 3.12 shows the resulting complex after successive
application of the subdivision, selection and simplification operator.

36

A \\m\\ |

‘ subdivision ,',

\ selection /
'

simplification

Figure 3.12: Merging of two complexes by primitive operations, adapted from Rossignac

In recent work, Wong and Sriram [116] developed an object-oriented product modeling framework,
SHARED, which is designed to support cooperative product development. This system employs a
non-manifold geometric modeler, GNOMES, described in He [46], and based on the SGC concept.

In [95], Rossignac and Requicha defined non-regularized set theoretic operators. The resulting
sets are non-regular sets that may be described by SGC’s. These operators may be implemented
using the above three basic operators for SGC'’s.

3.2.4 Other Non-Manifold Models

In a recent work, Desaulniers and Stewart [28] have extended the Euler operators to r-sets [90].
Such sets are obtained by regularized set operations, mentioned in the Introduction in connection
with the CSG representation. The set of manifold solids is a proper subset of r-sets. Configu-
rations allowed Lere are solids touching at a vertex or along a common edge, like those depicted
in Fig. 2.2. No isolated vertices or lines (such as symmetry axes) may be modeled. The data
structure proposed in [28] is built on top of the GWB [69]. Additional elements are a list of
manifold objects and a graph representing the spine of the r-set. The spine is composed of ver-
tices and edges, where non-manifold conditions occur. There are cross links between the spine
elements and incident manifold solids. The regularized extension of an Euler operator constructs
an infinitesimal face around the edge or vertex of the spine and updates the data structure ap-
propriately.

Masuda [72] developed a data structure for description of 3-complexes according to Definition
22a, where internal loops in 2-cells (faces) and cavities and holes in 3-cells (volumes) are allowed.
Non-Manifold solids that can be represented with this data structure include 1, 2 and 3-complexes
with the above extensions regarding 2- and 3-cells. In particular, configurations such as those of
Figures 3.4 and 3.5 belong to the modeling space.

37

Figure 3.13: Hierarchical structure of topolegical elements, adapted from Masuda

The topological elements of the structure are, in hierarchical order, vertex. edge, loop, face, shell,
volume and complex. Figure 3.13 shows the hierarchical structure of the topological elements.
Every lower order element is reiated to the next higher element in the hierarchy, since it may
belong to its boundary. A face is normally a boundary of one or two shells. A dangling face is
related directly with the complex. A wire edge in the three-dimensional space or within a volume
is connected with the associated degenerate complex or shell, respectivelv. In the normal case, it
belongs to one or more loops. Finally an isolated vertex is either a degenerate loop within a face,
a degenerate shell within a volume or an isolated point in the three-dimensional space.

Appropriate ordering and adjacency information is captured in the data structure. Ordering of
edges in a loop and around a vertex as well as ordering of faces with a common edge using Weiler’s
radial edge structure {112] is maintained.

A set of extended Euler operators for incremental construction of complexes is defined. For this
purpose, a modified Euler-Poincaré formula for non-manifold geometric models is used.

V—E+F-H-(v—-v,+v)=c—cp+e (3.1)

This is a specialization of the Euler-Poincaré formula for finite-cell complexes involving the i-
dimensional Betti numbers b; of the complex and the number of i-dimensional cells a; [39]:

S (=D = > (—1)%; (3.2)
=0 =0

In (3.1) V, E, F, and H have the same meaning as in equation (2.19). v, vy, and v, are the
number of volumes, the number of holes through volumes and the number of cavities in volumes.
c, ci, and ¢, are the number of compiexes, the number of holes through complexes and the num-
ber of cavities in complexes, respectively.

38

Boolean operators for non-manifold objects are reduced to a merging and an extracting operation.
Merging is performed by first generating all intersecting edges and vertices on each primitive
object, unifying coinciding topological elements and reconstructing volumes. Pointers to the
topological elements of the primitive objects are maintained for all elements resulting after the
merging operation. Ordering information is produced and maintained as required.

Extracting operations are set theoretic operations between sets of topological elements resulting
after the merging operations. Let A, B be the primitive objects and let A(A), A(B) be the
sets of topological elements belonging to A, B respectively in the merged object. Further, let
A(A™) C A(A), A(B™) C A(A) be the topological elements that are not boundaries of other
topological elements, such as dangling edges and faces or isolated vertices and volumes. The
sets cl[A(A™)], el[A(B™)] include all elements of A(A™) , A(B*"), and their boundary elements.
Four Boolean operators are defined, union &, difference © and two intersection operators, ®*+ and
®~, where in the first of them wire edges and lamina faces are retained and in the second those
are eliminated. If +, — and N denote the usual union, difference and intersection operations in
sets, then the above Boolean operations are defined as

AMA®B) = d[A(A™) + A(B™)] (3.3)
A(AS B) = Cc[A(A™) — A(B™)] (3.4)
AMA® B) = d[AA™)NA(B™)] (3.5)
AA®T B) = [A(4)N A(B)] (3.6)
(3.7)

A(Alﬂ-) = {Vh V2s V4: VS; V'Ta VS} (38)
A(B™) = {Va, V5, Vs} (3.9)
AMC™) = {Va, Vi, V3, Ve, V2, Va} (3.10)
A(Dm) = {V3$ V41 VS} (311)
(3.12)

The final object R is defined as
R=CoDpABB (3.13)

and thus

A(R™) = A(C™) - A(D™) 4 A(A™) — A(B™) = {4, Vi, Vi, Vr) (3.14)

The object R contains all topological elements of A(R™) along with their boundaries.

The above definition of Boolean operators facilitates undoing operations, since information per-
taining to the original primitive objects is maintained in the object resulting after the merging
operation. This property is particularly useful in form-feature modeling.

39

ve V7 | ve.

Figure 3.14: Resultant shape extracted from merged object: (a) four primitive objects (b} resul-
tant object (¢) volumes in merged object, adapted from Masuda

40

3.3 Abstract Models

We are now going to discuss abstract models for manifold subdivisions. The modeling space
consists of two-manifolds [40], three-manifolds. [29, 62}, and n-manifolds, [12, 13, 14, 65, 66).
Incremental construction of objects is made possible by using a small set of low level operators
compared to the muititude of Euler operators necessary in Euler-based models. Most of these
models were used to provide solutions to problems of computational geometry as construction of
Delaunay triangulations and Voronot diagrams.

3.3.1 The Quad-Edge Structure

The first model of the above kind, the forerunner of many models which appeared some years
later. was the quad-edge structure. developed by Guibas and Stoifi [40]. The modeling space
consists of subdivisions of compact. closed. two-manifolds (surfaces} either orientable or non-
orientable. without boundary. Examples of such surfaces are the sphere. the torus and the
projective plane. Subdivisions of surfaces of the above kind may be represented by the embedded
graph corresponding to a polvhedron with edges homeomorphic to the open interval (0.1} and
faces homeomorphic to an open disc. Both the primal and the dual graph are represented in the
same model.

The basic constructing element is the edge, or, equivaiently, arcs of the graph of the subdivision.
Two directions may be defined on some edge, corresponding to each one of the twa possible
orderings of its vertices. Further. an adjacent face induces its orientation on the edge, therefore
an edge may have two orientations. An orientation may always be defined locally on a manifold
even if it is non-orientable. Intuitively, the orientation corresponds to the side of the surface one
is looking at.

We refer to Fig. 3.15 for an overview of edge functions discussed below. Given a directed edge € we
may characterize one vertex as its origin, eOryg, and the other as its destination, eDest. Together
with the edge orientation, the faces on the left and the right, eLefi, eRight may be specified. The
edge with the same orientation and opposite direction is eSym, that with the same direction and
opposite orientation is eFlip. To visualize eFlip we may imagine that we lock at the same edge
from the other side of the surface without changing direction. A vertex may be oriented in a
manner consistent with the local manifold orientation. Consider a neighborhood of vertex eOry,
which is homeomorphic to a dis¢, Fig. 3.16. The edges having a common orientation, which are
directed away from the vertex form a circular list. The order of edges in this list is defined by
traversing the boundary of the neighborhood in a counterclockwise direction, as shown in Fig.
3.16. The above circular list is the ring of edges out of a vertex. The edge immediately following
e in this ring is eOnezt,

If we traverse the left face, eLeft, in a counterclockwise direction, the first edge we encounter is
eLnezt. The direction and orientation of eLnezt are such that eLnertLefi=cLefi. Edge eDnext is
the next edge to e in the ring of edges around eDest. Edge eRnext is the next edge encountered
by traversing eRight in a counterclockwise direction. By moving in a clockwise direction around
a vertex or a face, we may define eOprev, eDprev, eLprev and eflprev in an analogous way.

The dual graph may define a dual subdivision, whose edges are associated one-to-one with the

41

Figure 3.15: The edge functions, adapted {from Guibas

Figure 3.16: Ring of edges around a vertex, adapted from Guibas

42

edges of the primal graph by an appropriate construction explained in Section 2. The vertices of
the dual subdivision correspond to faces of the primal one and vice-versa. The following relations
define the dual subdivision §* of a subdivision 5 on a two-manifold.

(eDual)Dual = eDual® = ¢ (3.15)
(eSymiDual = (eDual)Sym (3.16)
(eFlip)Dual = (e Dual)FlipSym (3.17)
(eLnextYDueal = (eDuai)One:rt‘l (3.18)

Eq. {3.15) means that the dual of the dual subdivision is the primal subdivision. The Dual and
Sym operators may be used interchangeably, eq.(3.16), but there is a direction reversion in the
case of FlipDual, hence it is necessary to apply the Sym operator as in eq. (3.17). Eq. (3.18)
implies that traversing the edges of a face in the primal graph in the counterclockwise direction is
the same as moving around the corresponding vertex of the dual graph in the clockwise direction.
Thus. the dual graph is embedded on the flipped manifold. For example, if we have a subdivision
on the outside of a sphere. the dual subdivision is on the inside of the sphere. To avoid this
flipping a new edge function. Rot is defined as follows:

eRot = eFlipDual = eDualFlipSym (3.19)

Edge eRot is the “rotated” version of ¢ and corresponds to an edge with same orientation as e
which is directed from the dual vertex inside eRight to the dual vertex inside eLeft and crosses e
at a right angle (Fig. 3.15). Thus, if Rot is applied to eRot, this is rotated counterclockwise and
eSym is produced.

eRot? = eSym (3.20)

We denote by E(S) the set of edges of a subdivision. The edge functions satisfy the foilowing
properties:

eRot* = e (3.21)
eRotOnextRotOnezt = e (3.22)
eRot* # e (3.23)

e € E(S)< eRot € E(ST) (3.24)
e € E(5) © eOnext € E(S) (3.25)
eFlipf = e (3.26)
eFlipOnextFlipOnezt = ¢ (3.27)
eFlipOnezt™ # e V integer n (3.28)
eFlipRotFlipRot = e (3.29)

43

e € B(§)w eFlipe E(5) (3.30)

In {40] an abstract. combinationai object is defined. the edge algebra. An edge algebra is a
quintuple { E, E*. Onezt. Rot. Flip), where E. E* are finite sets and Onext, Rot. Flipare functions
on £, L* satisfving eqs. 13.21)-(3.30). It is proven in [40] that given an edge algebra. there is
always a subdivision S on a two-manifold and a bijective mapping f : £ — E(§) such that
f(eDual) = f(e)Dual ¥ e € E. The proof is based on trianguiations of subdivisions. Conversely,
a subdivision S on a two-manifold defines an edge algebra in the naturai way. Thus. an equivalence
between manifold subdivisions and edge algebras is established.

All edge functions may be defined in an abstract way in terms of the three basic functions, Onezt,
Rot and Flip. The origin of an edge ¢ € E is defined as the orbit of ¢ under Onezt, i.e. the
sequence

eOrg = (e.eOnext.eOnert-..... eOnezt™t. e) (3.31)

The above list is finite. since E is a finite set. The remaining runctions may be defined as follows

eSym = eRot? (3.32)

eleft = eRot™'10rg (3.33)

eRight = eRotOrg (3.34)

eDest = eSymOryg (3.35)

eLnext = eRot™'OneztRot (3.36)
eRnert = eRotOnexztRot™} (3.37)
eDnezxt = eSymOneztSym (3.38)
eOprev = eOnezt™! = eRotOneztRot {3.39)
eLprev = eLnezt™! = eOnextSym (3.40)
eRprev = eRnezt™! = eSymOnezt (3.41)
eDprev = eDnezxt™! = eRot ' OneztRot™! (3.42)

The data structure for representing a subdivision and its dual is the quad-edge data structure. An
array of dimension 4 is assigned to each edge. For an edge e, elements ¢{0] through e[3] contain
data pertaining to e, eRot. eRot? = eSym and eRot® = eRot™! respectively. The elements of the
array are structures with two fields each, Data and Nezt. In field Data, geometrical and other
non- topological information is stored. For example, ¢[0] may contain pointers to the coordinates
of the vertices of e, e[1] a pointer to the curve geometry, ¢[2] a pointer to the left face and ¢[3] a
pointer to the right face geometry specification. Field Nezt contains a pointer to eOnexrt. A bit
f is associated with each array element indicating whether the flipped version of the edge should
be taken. In view of the above, we may represent the basic structural element by a triple (e, r, f)
corresponding to eRot" Flip/. All edge functions may be generated by the information stored in
the data structure, for example

44

e v
bel eldl,
efol '

Figure 3.17: The quad-edge data structure. adapted from Guibas

(e,r, lRot = (e,r + 1+ 2f, f) (3.43)

(e,r, AFlip=(e.r, f+ 1) (3.44)

(e,r, f)Onezxt = (ey, f, f) with ey = e[r + f|. Next (3.45)

(e,r, lSym = (e,7+ 2, f) ~ (3.46)

(e,7, fYRot™ = (e,r + 3+ 2f, f) (3.47)

(e,r, f)Oprev = (1,1 — f, f) withe; = e[r + 1 — f].Next (3.48)

The second element of each triple in the above relations is evaluated mod 4, the third mod 2.
Eqs. (3.43-3.48) may be proven using the basic properties of the edge algebra functions, eqs.
(3.21-3.30) and the definitions of the remaining functions eqs. (3.32-3.42). The data structure is
illustrated in Fig. 3.17.

The four edges obtained after repeated application of Rot to an edge e are arranged around a
cross. They are the nodes of a hypergraph. The solid hyperarecs of this hypergraph correspond to
the vertices of the primal graph (faces of the dual graph) and the dotted hyperarcs to the faces
of the primal graph (vertices of the dual).

For orientable manifolds, such as a sphere with or without handles, the data structure may be
simplified by omitting the flip bit. In fact, two-manifold polyhedral objects we are interested in
solid modeling are orientable, and therefore the simplified version of the quad-edge data structure
applies to them. Thus, in the simplified version of the quad-edge structure (orientable two-
manifold) only four nodes are required. ¢, el = eflot, 2 = eRot?, e3 = eRot® and the Nezt field
contains the values e.Next=e, el.Nezt=e, e2.Nezt—=e2, e3. Next=el. Yet another simplification
results if only eRot and eRot? are represented, but this will increase the time complexity of some
traversal algorithms. The storage compiexity of the quad-edge structure compares favorably with

45

eRotOrg = eRotDest

eDest

eOrg

Figure 3.18: The Makedge operator

that of the winged-edge structure. While both require a linear storage space with respect to the
number of edges N of the subdivision, the constant factor is smaller in the quad-edge structure.

Only two operators are needed to construct any subdivision. The first operator, Makedge, delivers
a single edge, ¢, embedded on a two-manifold and its dual, eRot. The Dual is a loop, Fig. 3.18.
The following relations hold for the edge delivered by Makedge

eLeft = eRight (3.49)

eOnext = e (3.50)

eRotOrg = eRotDest (3.51)
eRotOnezt = eRotSym = eRot® = eRot™" (3.52)
eRot™10next = eRot™' Sym = eRot (3.53)
eSymOnext = eSym (3.54)

The second operator is Splice(a,b), which operates on the vertex and face rings of edges a,b,
i.e. the lists (¢, aOnezt, ..., aOnezt™?, a) (aRot,aRotOnert, aRotOnext?, ...,a} and the respective
lists of b. The face ring of an edge is the vertex ring of its flipped dual, aRot. If the two rings
are distinct, Splice combines them into one and i-these are the same ring it breaks it into two
pieces. If both rings are different, it may produce shapes that are of no interest in B-rep, such as
crosscaps. The formal definition of Splice is as follows. If @ = aOnezxtRot and § = bOneztRot,
then Splice(a,b) is the edge algebra with pairs (eOnext, bOnezt) and (aOnezt, SOnext) swapped.
In the general version of the quad-edge structure, i.e, with flip included, the following operations
are carried out in addition

46

o = aRot

O aRot aRotSym
a
a

b
O bRot bHotSym
b

= bRot

Figure 3.19: Joining of 1wo edges

(bOneztFlip)Onezt — aFlip (3.55)
(aOnextFlip)Onext — bFlip (3.56)
(BCneztFlip)Onext — afFlip (3.57)
{aOneztFlip)Onext — §Flip (3.58)

where ¢,b,,3 on the right hand side are the edges of the original algebra in all the above
equations.

We illustrate the effect of Splice with some simple exampies. In Fig. 3.19 two edges, a.b. are
shown with their vertex and face rings. Splice(a.b) unites the vertex and face rings pairwise.
The result is shown in Fig. 3.20.

Fig. 3.21 demonstrates the effect of Splice(aSym,b)

A closed polygon bounded by edges a,,...,a, is constructed by applying Splice sequentially as
in the following algorithm

POIngﬂ(G], A2y ey aﬂ) {

Splice{a,Sym, ay); Splice(asSym,a3); ...

Splice(an_;Sym, an); Splice(e,Sym,ay);

}

An algorithm for removal of an edge a from a subdivision is as follows

Remove(a) {
Splice(a,aOnezt);
Splice(a,aSymOnext);

47

aRot

bRotSym = bRot ™"
a
5 a b aRot bRot

bRot
aRotSym = aRot™1

Figure 3.20: Edges combined by Splice

-1
aRot bRotSym = bRot

E aSym Ob aRot ! bRot

a
aRof | Sym = aRot

Figure 3.21: Edges combined by Splice

48

Purgeia);
}

where Purge(a) deletes the node associated with edge @ from the structure.

An edge a is divided in two edges a,.as by the following algorithm

Divide(a) {
ay = Makedge():
ay = Makedge()
Splice(aOnext.a);
Splice{aOnezt.a,);
Splice(aSymOnezt,aSym);
Splice{aSymOnezt, a,);
Splice{a1Sym. a»);

1

The quad-edge structure is used in {40] to provide a data structure for the construction of Voronoi
diagrams or their duals. Delaunayv triangulations. Nevertheless, it mav be used as a basis of a
B-rep modeler for two-manifold polvhedra as demonstrated by the above examples. [t is worth
mentioning that any high level operator can be constructed by using onlv two primitive operators
compared to the multitude of Euler operators required by Euler-based modelers.

3.3.2 The Facet-Edge Pair Structure

The data structure by Dobkin and Laszlo [29, 30, 62] is the three-dimensional analogue of a
two-manifold subdivision. The modeling space of the proposed data structure consists of three-
manifold subdivisions or polyhedral subdivisions. (R®*,). Intuitively, a polyhedral subdivision
is a collection of poiyhedra incident along faces homeomorphic to disks (facets). A polyhedral
subdivision may be drawn on the boundary of a four-dimensional sphere just as a polygonal or
two-dimensional subdivision may be drawn on the boundary of a three-dimensional sphere. In the
data structure of Dobkin and Laszio. individual polyhedra should be orientable and of genus 0,
i.e. homeomorphic to a 3-ball, so they are not allowed to have any handles or cavities. However,
this does not pose a serious restriction of the modeling space. Polyhedra of a genus greater than
0 may always be decomposed into a collection of polyhedra homeomorphic to a 3-ball. Further,
in solid modeling we are not, in general, interested in non-orientable polyhedra.

The basic element of the data structure is the facet-edge pair ¢ = (f,e) consisting of a facet f
and an edge ¢ on the facet’s boundarv. Tle facet of pair a is denoted by facet(a), the edge by
edge(a). We shall use the notation a € C if edge(a) € C, facet(a) € C and edge(a), facet(a) are
incident. If Ey = (e” = e,e’,...,e™ !} is a circular ordering (ring) of edges incident to f (Fig.
3.22), such that e*~!,e* are adjacent. 0 € £ € n ~ 1, then there exist two possible orientations
of the facet f induced by E; and E}, where E} contains the same edges in reverse order. One
of these two rings is attached to the facet-edge pair a and is called the edge ring of a. Each
orientation induces a direction on edge e, which allows the definition of vertices of origin and
destination of the facet-edge pair. aOrg,aDest. In a similar manrer, there exist a ring of faces
F. and its reverse. F! with edge e on their boundary. The ring F., which induces a sense of
rotation around the edge e, is called the spin of the facet-edge pair ¢. One of the two above rings

49

¢! aDes

Figure 3.22: The handcuff diagram, adapted from Laszio

of facets is attached to facet-edge pair a, and is called the facet ring of a. Facet f is incident to
two polyhedra, aPpos, aPneg, such that if a stick normal to edge e rotates in the sense of aSpin,
it first enters in polyhedron aPreg, then crosses facet [and enters in aPpos. Fig. 3.22 depicts
the facet-edge pair by the so-called handcuff diagram.

There exist four oriented and spun facet-edge pairs sharing a facet f and edge e. They are
a, aSpin, aClock and aSpinClock, illustrated in Fig. 3.23. The facet-edge pair aEnezt has the
same orientation, spin and facet component as @ and its edge component is the next edge in &,.
Similarly, aFnezt is defined as the facet-edge pair with same orientation, spin and edge component
as a, and a face component co incident with the next face in facet ring F, (Fig. 3.23). Functions
Spin, Clock, Fnexzt, Enezt have the following properties

aSpin® = a (3.59)

aClock® = a (3.60)

a(SpinClock)’ = a (3.61)

aFnezt™! = aClock FrneztClock = aSpinFneztSpin (3.62)
aEnext™! = aClockEneztClock = aClockSpinEneztClockSpin (3.63)
aClockFrezt' # a Vi (3.64)

aSpinFnezt' # a Vi (3.65)

aClockEnezt' # a Vi (3.66)

aSpinEnert' # a Vi (3.67)

a€C o afFnexteC (3.68)

TG
G Lom oL

O<p
O_(P O_Oasmczact

" (- (- aspincoctspinciocs
/J\ /\

aClock
aSpin

Figure 3.23: The facet-edge pair functions

a € C o aClock € C (3.69)
eeC & asSpine C (3.70)
The dual of a facet-edge pair a = (f, €), denoted aS5dual, is defined as the facet-edge pair consisting

of the dual edge to facet f and the dual facet to edge ¢ in the dual 3-complex (R2, C*) such that
E.S5dual and F,5dual are composed of the duals of E,, F,. Formally,

edge{aSdual) = face(a)® (3.71)
face(aSdual) = edge(a)” (3.72)
Ei=(f5= 1" fom) (3.73)
F;=(eg=¢"...€,_1) (3.74)

where E, = (eg = €,...,€n-1), Fo = (fo = fy...) fa=1). Recall that in a 3-complex duals of
1-cells, i.e. edges are 2-cells, i.e. facets and vice-versa. Fig. 3.24 shows a facet-edge pair and its
dual. The rectangle is facet(a) and its plane is normal to the page, the triangle is facet(aSdual)
and is located on the page. The duals of aPpos,aPneg are vertices of edge(eSdual). Function
Sdual has the following properties

aSdual® = a (3.75)
aClockSdual = aSdualClock (3.76)
aSpinSdual = aSdualClockSpin (3.77)
eEnezt = aSdual FnextSdual (3.78)
a€C & aSdual e C° (3.79)

31

Figure 3.24: A facet-edge pair and its dual

the symmetric property afnert = uSdualFneztSduai can be proven easily using properties

(3.75), (3.78).

A facet- edge algebra analogous to the edge aigebra of [40] may be defined. The algebra is definred
over a set of triplets (a, v, P), where a corresponds to a facet-edge pair. v to the origin of edge(a)
consistently with the orientation of @ and p to aPpos. Functions Spin. Clock. Enext, Fnezt, Sdual
may be defined through the adjacency relationships in complex C and its dual C* [62].

Function aOrg may be determined through a partition of the set of facet-edge pairs in complexes
C,C*". Thus, eOryg is an equivalence class of the above partition consisting of all facet-edge pairs
with the same origin. Functions Dest, Ppos, Pnegare also partitions of the set of facet-edge pairs.
which may be defined in terms of Org alone using the known functions Clock, Spin, Sdual. as
follows

aDest = aClockOrg (3.80)
aPneg = aSdualOrg (3.81)
aPpos = aS5dualDest (3.82)

Functions Dest, Pneg, Ppos have. in addition. the following properties:

a0rg,aDest.aPpos,aPneg are all distinct (3.83)
aSpinOrg = aOrg (3.84)
aSpinClockOrg = aDest (3.85)
aFrnext'Org = aOrg ¥ integer i (3.86)
aSpinPpos = aPneg (3.87)

32

aClock Ppos = aPneg (3.88)
aSpinClock Ppos = aPpos (3.89)
aEnext' Ppos = aPpos ¥ integer i (3.90)

Function Srot. analogous to Rot of the quad-edge structure. is defined as

aSrot = aSdualSpin = aSpinClock Sdual (3.91}

The facet-edge pair aSrot has a spin opposite to the spin of @ and its edge is directed from aPneg
towards aPpos. The following relations may be proven using the properties of Clock. Spin, Sduel
{eqs. (3.59)-(3.79).

aSrot* = aClock (3.92)

aSrot® = aSrot™! (3.93)

aSrot* = a (3.94)

aSrot’ Fnext = aFnext™ Clock (3.95)
aSrotFneztSroi = aEnert™'Clock (3.96)
aSrot® FnertSrot = aEnert (3.97)

The data structure for a polyhedral subdivision consists of one node n for each facet-edge pair.
Each node is an array of length 4. storing data pertaining to aSrot"Spin*,r = 0,1,2,3,3 =
0,1. The elements of the array are structures with two fields. Data and Nert. In the Data
field geometrical and other non-topological information is stored. The Next field is a pointer to
aSrot" Fnext. Further, a bit containing the value of s is assigned to each array element.

If we represent the expression aSrot"Spin® by a triplet {n,r,s), then the above data structure
captures all basic facet-edge pair functions as implied by the following relations.

(n,r,s)5Rot = (n,r + 12s,3) (3.98)
(n,7,8)Spin=(n,r,s+1) {3.99)
(n,r,8}Clock = (n,7+2,s) (3.100)
(n,r,5)Sdual = (n, 7+ 1+ 28,5+ 1) (3.101)
(n,r,s)Fnezxt = (n,,2s,8) withn, = nfr + 2s]. Nexrt (3.102)
(n,r,s)Fnezt™® = (n,r,5)Clock FneztClock (3.103)
(n,r,s)Enezt = (n,r,s)SdualFnextSdual (3.104)
(n,r,s)Enext™! = (n,r,5)Clock EnextClock (3.105)

Operations involving are computed mod 4, those involving s only are computed mod 2. The
above relations may be proven using eqs. (3.59)-(3.63), (3.75)-(3.78). The correctness of the im-
plementation may be demonstrated by proving egs. {3.59)-(3.63), (3.75)-(3.78) using eqs. (3.98)-
(3.105). However, it should be noted that eqs. (3.59)-(3.70) and (3.79) are not automatically
guaranteed, therefore it is up to the basic operators to enforce them. The Org function, which is
a partition of the set of facet-edge pairs, may be implemented by any suitable structure, such as
a tree, list or hash table. Functions Dest, Pneg, Ppos are well-defined by eqs. (3.80)-(3.82).

A small number of basic operators may be used to construct any polyhedral subdivision. Operator
make._facet_edge() returns a node corresponding to a single facet-edge pair, a. For any facet-
edge pair @’ = aSdualClockeSpin®,d,c,s € {0,1}, the relation o’Frez{ = a’Enezt = a' holds.
Operator splice_facets(a,b) combines the facet rings Fi, F3, if they are distinct, and, if they are
identical, splits the common ring into two distinct rings. If & = aFneztClock, 8 = bFneztClock,
the effect of this operator is formalized by the following equations

aFnezt — bFnext (3.106)
bFnext « aFnext {3.107)
aFnext — fFnext (3.108)
BFnext — aFnezt (3.100)
aClockSpinFnext — BSpin {3.110)
bClockSpinFnext — aSpin (3.111)
aClockSpinFnext — bSpin (3.112)
BClockSpinFnext — aSpin (3.113)

The above assignments are assumed to be carried out in parallel, or alternatively, expressions on
the right hand side of the above assignments may be considered as copies of the relevant entities
stored in some auxiliary memory locations before serial execution of (3.106)-(3.113).

A dual operator to splice_faces(a, b) is splice_edges(a,b). Edge rings E,, Ej of the facet-edge pair
undergo analogous transformations under splice edges(a,b) as £, Fy under splice_faces(a,b).
Operator splice_edges(a,b) is implemented as

splice.edges(a,b) = splice_facets(aSdual, bSdual) (3.114)

Operator transfer is used to manipulate partitions of the set of facet-edge pairs, such as ¢Oryg,
aDest,aPpos,aPneg. The operation iransfer(A, B) merges the equivalence classes A, B by
transferring each element b € B into A.

Individual polyhedra of the polyhedral subdivision may be constructed and transformed by a
data structure equivalent to the quad-edge structure of [40], which is derived from the structure

for polyhedral subdivision, described previously. An edge of a polyhedron p may be represented
by a pair < a,d >, where a is a facet-edge pair and d a duality bit. The edge functions are defined

as follows

54

< a,0 > Flip =< aFnextSpin, 0 > (3.115)

< a,0 > Sym =< aFnextClock,0 > (3.116)

< a,0 > Onext =< aEnezt™ ! FnextClock,0 > (3.117)
<a,d> Dual =< a,1 —d > (3.118)

< a,1 > Flip=< aSpinClock,1 > (3.119)

< a,1> Sym =< aFnextClock,1 > (3.120)

< a,1> Onezt =< aEnezt™',1> (3.121)

< a,d> Rot =< a,d > FlipDual (3.122)

The validity of eqs. (3.21)-(3.30), (3.32)-(3.42) of the edge algebra may be shown using eqgs.
(3.59)-(3.70) and (3.80)-(3.90). Thus, if A is the set of facet-edge pairs of the polyhedron P,
E={<a,0>a€ A}, E* = {< a,1 >,a € A} and Onext, Rot, Flip as defined above, an edge
algebra is obtained and operators Makedge and Splice of [40] may be used to manipulate single
polyhedra.

In [62], the operators makesegment(}, make loop() simulating Makedge are implemented. These
operators make use of make_facet.edge, splice_facets and splice_edges. Operator make_segment cre-
ates a subdivision of the sphere consisting of a single edge and make_loop its dual. Operator Splice
of [40] is simulated by calls to splice.edges. Two polyhedra F,, F;, prepared by make_segment,
make_loop and the facet-edge version of splice may be glued together by operator meld(a,b), where
a, b are facet-edge pairs of Py, Py, respectively, such that facet(a) € 8F,, facet(b) € 8F, and the
edge rings E,, £y consist of the same number of edges, I. This operator glues aPneg, bPpes along
facet(a), facet(b) by fusing edge(a:), edge(b), where a; = aEnext’,b; = bEnext’,0 <i < { - 1.
If the two polyhedra belong to twe distinct polyhedral subdivisions (R3,C,), (R3,C;), these are
combined into one subdivision by the meld operator.

Applications discussed in [29, 30, 62] include construction of three-dimensional Voronoi diagrams
and Delaunay triangulations, construction of weighted Voronoi diagrams, and decomposition and
manipulation of 4-polyhedra.

3.3.3 The Hexblock Structure

In [17], Buckley reports a divide-and-conquer algorithm for computing 4-dimensional convex
hulls, which uses the hezblock data structure. This data structure is capable of describing three-
dimensional subdivisions. However, no detailed description is given in [17} other than a figure
illustrating connections of topological elements with pointers. The author states that storage
complexity is linear with respect to the number of edges and time complexity for calculating
topological adjacencies is also linear with respect to the size of the output set. Further, his splice
operators work safely, so there is no danger of producing inconsistent subdivisions by inept usage
of the basic constructors as alluded in [29]. It is mentioned in [17] that a paper describing the
hexblock structure is in preparation.

55

3.3.4 The Cell-Tuple Structure

Brisson [12, 13, 14] presented a data structure for describing subdivisions of n-manifolds, (", C)
calied cell-tuple structure. The quad-edge structure {40] for subdivision of two-manifolds and
the facet-edge pair structure [29] for subdivisions of three-manifolds may be represented by ap-
propriate specialization of the cell-tuple structure. No restrictions are posed to the underlying
n-manifold which may be a closed surface embedded in ®"+! or a manifold with boundary. The
cell-tuple structure makes use of the incidence graph whose nodes are the cells of the set C' and
the switch function described below.

The cells of C = {cq }aca are partially ordered by a relation “<” defined as ¢4, < €a, if €ays oy
are incident and ¢o, C 8¢qa,. If, in addition, dim ¢,, = dim ¢4, + 1 we shall write ¢, (¢a,. Set
C is assumed to contain two unique abstract cells, c_; of dimension —1 and ¢p41 of dimension
n + 1, which are incident to all cells of C, i.e. c-; < ¢4 < €py1, @ € A. Given two incident cells
Cay s Cays With €q, < Ca,, the set of cells incident to both cq,, ¢, and of dimension higher than
that of ¢4, and lower than that of ¢,, is denoted by $(cq,, €a,). Thus,

S(cﬂﬂcaz) = {C €, Coy < C< CCX)) (3.123)

A cell-tuple is a tuple ¢ = (CagsCays---+Can), Where ¢o, is a cell of dimension k , cq,_,{ca,;
1 < k < n. The kth element of the cell-tuple is denoted by tx. Further, Tas is the set of all
cell-tuples of subdivision (M, C).

Tang = {t = (Cagr---+Can)s Ca, €C . 0<k <0y eop_ {Cay} (3.124)

In [12, 13, 14] the following Lemma provides the basis for the definition of the switch operator.

Lemma 1 For every t € Ty there is a unique ' € Tas such that ¢}, # tx and 8 =1t; Vi#k,0<
k < n. In other words, given any cell-tuple, there is a unique cell-tuple with all but one identical
cells.

The switchy operator is a function switchy : Tag — Tag, which when applied to a tuple ¢ delivers
tuple #' defined as in the above Lemma. A variant of Lemma 1 is as follows.

Lemma la Given a subdivision (M, C) of an n-manifold M and cells ¢4, _, (¢a,{€ay,, of dimen-
sions k — 1,k,k + 1, respectively, 0 < k < n, there is a unique cell ¢, € C,c,,, # ¢qa,, such that
Cag_14Ch, (€azyy - The cell-tuple structure is a pair Tar = {Tar, {switchi},0 < k < n}. The switch
operator provides a tool for navigating through the incidence graph of the subdivision. Based on
switeh, a family of switch-like functions is constructed as follows. Function switchy : Tar — Tr

is defined as swiichi(switehi()). In general, if w = wy ...y € {0,...,n}*, then

switchy, (switchy,_ (... (switch,, (1))...))

t if w is the empty word (3.125)

switchy, () = {
The star notation used above is explained here briefly. If A is a finite set, the alphabet, words
based on alphabet A are strings consisting of elements of set A, aia;—1...a0,a: € A, 0 €<
in the same manner words in any language are built from letters. Any element may be repeated
more than one times in a word. The empty string is the empty word. The symbol Ax is used

56

Figure 3.25: The cell-tuple structure and the incidence graph, adapted from Brisson

to characterize the set of words constructed from alphabet A. Thus, the index w in (3.125) may
contain the same digit several times.

Fig. 3.25 shows a plane figure (subdivision of the sphere), where cell-tuples are represented by
small dots. The dot corresponding to a tuple (v,e, f) is inside the face f and nearer to vertex
v and edge e than any other dot. The switch function may be visualized by a labeled graph
Gup (Fig. 3.25) with cell-tuples as nodes and arcs connecting tuples associated by some switch
function. The arc is labeled with k.

Given a set I C {0,...,n}, the I-orbit of a tuple ¢, denoted switchr.(t), is defined as
switchr.(t) = {t' € T, t' = switch(t)Vw € I+} (3.126)

The I-orbit of a tuple ¢ consists of all tuples that may be reached from ¢ in graph Gas by following
paths in G'ay, whose arcs are labeled by elements of set 1.

For any cell ¢ € C with dim(c) = k, the set of associated cell-tuples is defined as

57

assoc(c) = {t € Ty, tx = ¢} (3.127)
In Fig. 3.25, the assoc sets of a face, edge and vertex are shown. Also shown is the incidence
graph of the subdivision, Ips.

Two cell-tuple stractures Tu, Tn are equivalent if there is a bijection f : Ty — Tn such that
switchg(f(1)) = f(switch,())}Vi € Tps. In [12, 13, 14], two important theorems are proven

Theorem 1 If (M, (), (N, D) are subdivided n-manifolds, then the following are equivalent:
1. (M,C), (N, D) are equivalent
2. The incidence graphs of the subdivisions, Jxs, Iy are isomorphic;

3. The cell-tuple structures Tay, Tiv are equivalent.

Theorem 2 Given two incident cells ¢a,_,,¢a,,;, € C\ €ap_y < Copy, Of dimensions k& — 2,k + 1
respectively, there exists a cell-tuple t° € T such that t)_, = ca, _,, 2., = €a,,,. Further, for
any such t°, if the sequence of cell-tuples t°,..., ™!, where m is the number of elements of
5(Cog—z> Cary,) according to (3.123) is defined by

;| switchy_1(t7) ieven
t= { switchk_l(ti_l) i odd (3.128)
then the cell sequence ¢y, ... ¢y, _, defined by
_Jtiy deven 2<i<m
C”‘_{t}c jodd 1<i<m—1 (3.129)

provides a circular ordering of S{ca,_,, Cag,,)-
An alternative formulation of the same theorem is as follows.

Theorem 2a Under the same assumptions of Theorem 2 there exist cells ¢,,, ¢, € C such that
Car—a{Cnol{Cnm {Copy, - For any such cqy, €y, the sequence ¢y, . ..cyq,_, defined by

e = { switchg_t(Cag_ps CnicyrCniey) teven 2 1< m (3.130)

switehg(€y; 11 Cni_yrCoryy) t0dd 1<i<m—1

gives a circular ordering of S(¢a,_,s €ayy,)-

Theorem 1 provides the theoretical basis for the unambiguous description of subdivided n-
manifolds either by the cell-tuple structure or by the incidence graph. With the help of Theorem
2 a circular ordering of cells adjacent to a given cell may be defined. For example, in a three-
dimensional subdivision, the edges and faces of a shell s adjacent to a vertex v may be ordered
as follows, Find an edge e; and a face f; of the shell incident to the vertex and to each other.
Then, find the unique edge e; of this face, which shares with the above edge the vertex v, i.e.
(v, e, fi,) = switchy(v, €1, fi,8). Proceed by locating a face f; of shell s containing edge €y, i.e.
(v, €q, fa. 8) = switcha(v, €3, f1,$). The procedure is repeated until we return to edge e;.

58

Theorems 1 and 2 as well as Lemma 1 providing the definition of the switch function are proven
by refining (M, C) through a generalized barycentric subdivision. The dual of a subdivision may
be constructed by simply turning the incidence graph upside down. Thus, vertices of the primal
graph ate n-dimensional cells of the dual. In general, the dual of a k-cell is an (n — k)-cell and
incidence relations are preserved. If we represent the canonical map of the dual transformation
by dual : C — C*, ¢}, = dual(ca), the set of dual cell-tuples is defined as

Tht = {{chpse -+ Cag)r {Cagr+ -1 Can) € The} (3.131)

and the dual swiich function as

SWIChR(Ch yenvyChyneevsCog) = (Chpr v v s Cagae v vs Cing) (3.132)

La 29 L

where

Cop = swilchp,_k(€apy---1€0n)" {3.133)

In [12, 13, 14] the dual switch function is defined as follows

SWitchR(Cags -+ -y Can) = (€ors v s Cop) (3.134)

L] <15}

The switch function possesses some basic properties, Let t € Tas U Ty, ¢ # 4,4,7 € {0,...,n}.
Then

switch;(t} £ 1 (3.135)

switch,;(t) # (3.136)

switchpa(t) =1 (3.137}

if =4+ 1, Im > 2 such that switchy;m(t) = 1 (3.138)
if j #4, i 1, then switch;)2(t) = ¢ (3.139)
switchrir(t) = switchn—i(t) (3.140)

Although the dual subdivision is automatically represented by the cell-tuple structure, it does
not enhance its capabilities. Function switchg is defined mainly to establish equivalence of the
cell-tuple structure with the quad-edge structure and the structure based on facet-edge pairs.
Therefore, we may restrict ourselves to properties (3.135)-3.139), which hold for tuples of the
primal subdivision, i.e. £ € Thy.

So far the cell-tuple structure for subdivided n-manifolds without boundary has been discussed. If
M is an n-manifold with boundary, it may be shown that (80, C?), where C? = {c € C, ¢ C M}
is a subdivided (n — 1)-manifold without boundary. We add an extra abstract cell ¢4, to set C,
where dim(¢,,.) = n» and Ve € C% < ca,,. It should be noted that the complement of M with
respect to " is not always a manifold, hence the predicate ‘abstract’ to €40 If C* = CU{co,,}
then Lemma 1 providing the uniqueness of switchy(?) still holds for (M, C*). Therefore, with the

39

addition of the abstract cell ¢, subdivisions of manifolds with boundary may be accommodated
in the cell-tuple structure.

In subdivided two-manifolds a cell-tuple {tg, 11, t) may be associated with a unique edge reference
of the quad-edge structure. The direction of edge #; (e = 1) is implied by vertex #o(to = eOrg)
and its orientation by face t2(t; = eLeft). Thus, a bijection ¢ between the cell-tuple set Tys
and the edge set £ may be established, ¢ : Tpy — E. Function switeh; corresponds to Onexzt,
function switchs to Flip and function switchag to Rot, or equivalently, if e = ¢(t), then

eOnext = ¢(switchi2(t)) (3.141)
eFlip = ¢(switchy(t)) (3.142)
eRot = ¢(switchypr(t)) (3.143)
Further,
eSymFlip = ¢(switchg(t)) (3.144)
eQOnextFlip = ¢(switch(t)) (3.145)

All basic properties of the edge algebra, eqgs. (3.21)-(3.30) may be proven by using egs. (3.135)-
(3.140) and, conversely, if function switchy, k = 0,1,2 is defined by (3.144), (3.145) and (3.142),
respectively, properties (3.21)-(3.30) of the edge algebra may be used to establish (3.135)-(3.140).
The completion of a two-manifold subdivision used by Guibas and Stolfi in [40] to prove equiva-
lence between their edge algebra and two manifold subdivisions is a specialization of the general-
ized barycentric subdivision.

Similarly, a tuple (v, e, f,s) of a three-manifold subdivision is associated with a unique facet-
edge pair a. The orientation of a can be determined uniquely through vertex v, which induces a
direction on edge ¢ and hence an orientation on face f. The spin of @ is determined by shell s,
which by convention may be set equal to aPpos. Operators Clock, Enext, Frnext, Rev and Sdual
may then be expressed in terms of appropriate swiich functions. All basic constructions given
in [40, 62] may be formulated in the cell-tuple structure in terms of repeated applications of the
switeh,, function. where the length of word w is at most 2.

In addition, special objects like edgeuses, faceuses in Weiler [112] and cusps in Choi [25] correspond
to orbits in the cell-tuple structure.

One basic operator defined in [12, 13, 14] for the manipulation of subdivisions is attachg. This
operator modifies the cell-tuple structure by associating the kth component of two cell-tuples
t!, 12 with each other. The formal definition of attachs is as follows

attachy(t', 1) : (Tar, switch) — (Tn, switch’) , 12 & switchy (1) (3.146)
switch(t') = * (3.147)

switchi(t?) = ! (3.148)

switch) (switehy(t')) = switchy(t?) (3.149)

60

switch] (switehy(t?)) = switchy(1') (3.150)
switchh(t) = switchi(?), YVt € Tar, t £ 11,1 (3.151)

It should be noted that the above operator satisfies conditions {3.135,3.137) but in certain circum-
stances conditions (3.138,3.139) may not be fulfilled. Another basic operator, genljoing, satisfies
all conditions (3.135)-(3.139) and hence produces valid cell-tuple structures. Operator genijoin;
produces a new cell-tuple structure by applying atiachy(switeh,(!), switch,(t?)) for all words
w € I, where I = {0,...n} — {k— 1,k k+ 1}.

Brisson discusses four implementation methods for data organization in the cell-tuple structure.
The first is the graph approach, based on the incidence graph. Any appropriate data structure for
representation of graph structures may be used. A convenient method based on the hierarchical
structure of the incidence graph is to store incidence relationships between cells of dimensions
differing by one. Either direction from higher to lower dimensional cells or both may be captured
in the data structure. Theset of standard operators in the graph structure may include make_node
to generate a node representing a cell, kill_node to destroy a node, make_incideni(v,v3) to make
nodes 1, v, incident provided that dimug = dimesy + 1 and kill_incident(v,,v;) to remove an arc
from the graph.

The second implementation method, the data base approach, uses a data base management system
to store all tuples of an n-dimensional subdivision. To each cell ¢,, of a tuple £ = (¢qq,.-.Ca,) 2
pointer is attached indicating the location of switchi(t) in the data base.

The third implementation method involves storing triples {cu,_,,CaysCay,,) instead of entire
tuples and associate to each triple a single pointer to triple (cﬂk—l"c:xk’cﬂ'k+1) according to the
second form of Lemma 1. The second and third approaches guarantee consistency and correctness
of the cell-tuple structure.

The fourth implementation method, the pointer approach, uses a record consisting of an array of
pointers to cell descriptors of the cell-tuple components and another array of pointers to cell-tuple
records obtained by applying the switch operator.

In [12, 13, 14], an analysis of storage complexity for three standard subdivisions, the minimal
subdivision of an n-sphere, the n-simplex and the n-dimensional hypercube is carried out.

In any implementation of the cell-tuple structure a set of basic constructors for incremental build-
ing of subdivisions should be present. Constructor make.vertez produces a vertex representing
a minimal subdivision of a zero-manifold. Constructor kill_vertezr removes an isolated vertex.
Constructor lift (Fig. 3.26) accepts as input a subdivision (M, C) of an (n — 1)-manifold M and
produces a new subdivision M’,C U {c,, }, where M’ is an n-manifold homeomorphic to cl(B™)
and Jc,,, = C. In other words, ¢,,, is the n-dimensional cell, whose boundary consists of all cells
of subdivision (M, (). Operator unlift has the reverse effect.

Constructor join merges two cells ¢4, ¢, which should be equivalent if they are considered as
subdivided manifolds together with their boundaries. If the join constructor is applied to n-
manifold subdivisions, cells ¢,, ¢/, should be (r — 1)-cells. In addition, they should be boundary
cells in subdivisions of manifolds with boundary. The parameters passed to join include pairs of
identified boundary cells of ¢s, ¢, so that the merging operation is defined in an unambiguous
way. One method is to identify pairs of vertices to be merged in one. Another method is to specify

chains (Cugs- - -Cay = Ca)s (Chgs+ - -Ch, = Cq)s such that ea,_, {ca,, ¢4, {€5,1 £ 1 £ k. Constructor

i)

Figure 3.26: The lift and unlift operator, adapted from DBrisson

Figure 3.27: The join and unjoin constructor, adapted from Brisson

62

Figure 3.28: The split and unsplit constructor, adapted from Brisson

join will then merge (¢4, ¢j,.) in one cell. The remaining boundary cells of ¢,, c;, are identified by
applying the switch operator. The reverse constructor is unjeoin. Fig. 3.27 illustrates the effect
of join and unjoin.

The spiit constructor is used to divide k-cells and provides a generalization of Euler operators,
It accepts as input a number of cells on the boundary of a cell ¢,, such that their union is
homeomorphic to sphere §¥2, A (k — 1)-cell is built first by applying the lift constructor to the
above set and their cell ¢,, is split into two cells (Fig. 3.28). The reverse constructor, unsplit,
eliminates a cell of dimension &k — 1, which is incident to two k-cells only and merges those cells
in one.

Any subdivision of an n-manifold may be built incrementally by a repeated application of the
basic constructors. However, simple constructors for generating simple subdivisions, such as
standard geometrical figures, may be easily implemented. For example, in the incidence graph
approach, all one has to do is to provide the incidence graph in the format required by the
particular implementation of the data structure.

In {12, 13, 14} details of an implementation are given based on the data base approach. The
data structure is centered around nodes of two types, the cell-tuple node and the cell-desc node.
The cell-tuple node contains an array of pointers, one pointer for each one of its cells pointing
to other cell-tuples associated to it by switch. Another field of the cell-tuple node is an array of
pointers to cell-desc nodes describing the geometry of each one of its cells. Other fields contain
the dimension of the tuple and auxiliary data used in the implementation of the construction and
basic interrogation algorithms. The data structure is implemented in C++ allowing a unified
treatment of geometrical specifications by a hierarchical organization of geometrical primitives.

63

3.3.5 Other Abstract Approaches

Lienhardt {65, 66] has developed a topological model for the description of subdivisions of either
orientable or non-orientable n-manifolds with or without boundary. The model uses combinatorial
objects, the n — G-maps, consisting of involutions operating on a set B, whose elements are called
darts. An involution o is a function @ : B — B with a?(d) = b ¥V b € B. A dart may be
regarded as one half of an edge including one of its vertices. It may be shown that there is a one-
to-one correspondence between n — G-maps and abstract cell-tuple structures obeying (3.135),
(3.136), (3.137) and (3.139). The dual subdivision may be easily constructed from an n — G-map
describing the primal subdivision. For some models discussed so far [7, 29, 12, 13, 14, 40, 108],
an equivalent n — G-map is sketched. Some basic construction operators and a suitable data
structure for n — (G-maps are discussed in [66). An implementation of this model is described in
(31].

In [77] the Winged Representation for modeling of n-dimensional, regular simplicial complexes
{Definition 19a) is introduced. The complex may be embedded in a higher dimensional space.
The data structure is very simple. For every n-dimensional simplex oy of the complex, a set of
n + 1 pointers is stored, each pointer pointing to the simplex oy adjacent to oj along its I-th
face (it is recalled that a m-simplex has n + 1 faces of dimension n — 1 each). In the case of a
simplicial complex with boundary some pointers associated with boundary faces of the complex
have a 0 {or NULL) value. Another set of n + 1 pointers points to the vertices of simplex oy,
-which bear the geometric information, i.e. vertex coordinates in the embedding space.

Useful operators for the creation and transformation of simplicial complexes are defined and
implemented. Such operators are affine transformation (translations, rotations, scaling, shear),
the boundary operator, sweeping, extrusion, projection and set operators.

Affine transformations are simple geometrical operations on the coordinates of the vertices of the
complex. Given a n-dimensional, regular, simplicial complex P with boundary, the boundary
operator creates the Winged Representation of the n — 1-dimensional complex 9P consisting of
boundary faces of P. To derive the new structure, a consistent orientation and numbering scheme
of the boundary faces of a n-simplex based on permutations of vertex indices is used.

When a n-dimensional simplicial complex P embedded in RV is swept, a higher dimensional
complex embedded in RV results, whose dimension is 4 1. Extrusion of P in RN creates a n+1-
dimensional complex embedded in £¥+!, Projection of an n-dimensional complex embedded in
£V penerates a new complex of dimension n — 1 embedded in RNV by simply removing the same
coordinate from all vertices.

Set operators (union, intersection, difference) are implemented using regular sets as in a CSG
context. Geometrical operations (intersections) are performed on constituent simplexes. A simpli-
cial decomposition of the resulting complex is generated. Since simplexes are convex sets, linear
programming methods can be used to reduce complexity of geometrical operations. However, it
should be noted that the complexity of set operations increases with n!, where n is the dimension
of the complexes involved.

The extrusion, projection and set operators can be used for polyhedral approximation of free
configuration spaces of mobile systems and in modeling vector fields varying with time and defined
over a manifold, which can be approximated by a regular simplicial complex.

64

Chapter 4

Applications and Concluding
Remarks

Geometric modeling is an evolving field with important applications in engineering design, analysis
and production of complex engineering objects, vehicles and structures. Furthermore, geomet-
ric modeling can be applied in representation and interrogation of large data bases for physical
properties (e.g. geophysical, ocean databases), in computer visualization of physical phenomena
and in Geographical Information Systems (GIS). However, the application of generalized bound-
ary representations in databases and visualization of physical phenomena is an active research
topic. Generalized boundary representations are capable in addressing all above problems, be-
cause of their modeling power and generality. They are based on sound mathematical principles
and computer science concepts. As we will see below, they are able to cover the major prod-
uct development stages at varied levels of abstraction ranging from low-level representation to
modeling and user interfaces. Despite high computational complexity of geometric modeling algo-
rithms, current computer hardware and software technologies permit the development of efficient
applications for large and complex systems.

4.1 Geometric Modeling for Computer-Aided Engineering

Table 4.1 conceptualizes the application of geometric modeling in Computer-Aided Engineering,.
In particular, we are concerned with the full range of product development stages, from prelim-
inary design to production and with the levels of abstraction necessary for implementation of
geometric modeling systems and their use by practitioners.

The horizontal axis of Table 4.1 involves the stages of:
e Design, in which the geometric shape of a product is defined in detail;

e Analysis, in which geometric models are subjected to performance and manufacturing eval-
uation and simulation;

¢ Production, in which a physical realization of the object is constructed or maintained later
in the life-cycle of the product.

65

Modeling Visualization, animation and virtual reality

Assemblies and muttifunctional systems

Tolerance, inspection mathods and roverse engineering

Interference analysis

Discretization

Idealization

Mixed-dimensional modeling

2 1/2-D modeling

CS5G technigues

Parametric design
methods

High level geometric
operators

Free-form objects

Representation | Data convertors

Representation structures and algorithms for non-homogenegus objects

Algorithmic and numerical robustness

Computational geometry algorithms and methods

Topological and geometric cperators

Data structures and database management

Design ' Analysis ' Production

Table 4.1: Product Development Stages

It should be emphasized that feedback from analysis and production to design is an essential
part of the product development process.

The vertical axis of Table 4.1, which identifies the abstraction level of a modeling activity,
is subdivided into the following layers.

¢ Representation layer, in which all data structures and schemas and their basic low-level
manipulation algorithms reside.

o Modeling layer, through which designers, analysts and manufacturing engineers define, in-
teract and interrogate the geometric model of the object. This layer provides the tools and
algorithms for converting user input to structures used by the lowest layer and, conversely,
for interrogating the lowest layer in response to user queries.

In the following, we discuss each layer of abstraction in Table 4.1.

G6

4.1.1 Representation Layer

The following problems and issues pertain to the representation layer.

1.

Data structures and database management. Chapter 3 of this monograph describes
a variety of data structures for generalized boundary representations of geometric objects.
Medern object-oriented techniques permit the effective implementation of these data struc-
tures and basic algorithms for their manipulation. Relational and object-oriented database
management systems have been frequently employed for data organization.

Topological and geometric operators. Topological operators include the generalized
Euler operators and data structure interrogation operators. These operators permit the
creation and modification of objects at the lowest level and the extraction of incidence and
adjacency information. Geometric operators involve primarily the solution of systems of
linear and non-linear equations. These systems arise in the computation of intersections of
geometric entities, distance computations, etc. [9, 101, 120].

. Computational geometry algorithms and methods. These include primarily the

solution of combinatorial problems in geometry, such as point classification, convex hulls,
Voronoi diagrams and medial axis transforms [85, 40].

. Algorithmic and numerical robustness. Algorithmic robustness is an important con-

sideration in the solution of non-linear problems, such as intersections of free-form surfaces.
Numerical robustness is related to the behavior of exact algorithms when implemented in
finite precision [50]. Robustness problems in the presence of imprecise arithmetic are an
important issue for basic research. Interval arithmetic methods offer the potential for numer-
ically reliable (verifiable) computation and are a topic of active research in computational
geometry [9, 68, 67, 76].

. Representation structures and algorithms for non-homogeneous objects. The

advent of composites and Solid Free-Form Fabrication (SFF) methods permit the manufac-
ture of complex objects with non-homogeneous internal properties. Modeling of structures
which permit the definition of multi-cell objects naturally permit the representation and in-
terrogation of non-homogeneous objects with piecewise constant internal properties. More
complex structures are needed for representing continuously varying internal properties and
more tesearch is needed in adequately addressing this problem.

. Data convertors. Effective communication between two CAD systems with different

mathematical formulations is a prerequisite for realizing the potential of CAE. Data con-
vertors are algorithms which translate the internal representation of an object from system
to system. Important issues are preservation of information content in the translation pro-
cess, numerical accuracy, efficiency -and-computer memory usage-[5, 52, 79].

4.1.2 Modeling Layer

Within the modeling layer we distinguish primarily design, interrogation and manufacturing is-

sues.

However, some issues cut across the traditional subdivision of design, analysis and produc-

tion and will be dealt with under the term general modeling tools and facilities.

67

Design issues and methods include:

1.

The definition and interrogation of objects with a free-form boundary. Piecewise
rational polynomial curves and surfaces, for example the Non-Uniform Rational B-Splines
(NURBS) are the most popular representation. However, their use has important conse-
quences for algorithm robustness and efficiency. Design methods with free-form surfaces
include approximation and interpolation techniques, interactive tweaking and bending op-
erators.

The definition of objects with high level geometric operators, such as offsets,
sweeps and blends. The introduction of these additional surface types has serious
consequences on algorithm efficiency and robustness {82, 6, 38).

Parametric design methods. These methods assist the user in defining and modifying
complex shapes of a particular topology but with dimensions obeying particular constraints.

CSG techniques permit the definition of solid objects using Boolean operators on simple
primitives. They facilitate the definition of complex mechanical parts through the processes
of material positioning, removal and addition. In most current modelers, CSG is one of the
more important methods of shape specification. CSG objects carry with them a procedural
history of object definition and are, therefore, useful in editing operations. CSG models
are typically converted to boundary representation models for further processing, such as
visualization.

2%-D geometric modeling. This style of modeling method is used extensively in architec-
tural applications, particularly in the early design phases. They reflect the procedures used
by practitioners and are effective, because they abstract and simplify the complex ob jects
designed within this domain. 2}-D models are converted downstream to 3-D models for
more refined levels of interrogation.

Mixed-dimensional modeling. In the design of complex vehicles and structures, the most
common approach involves design specification through a sequence of entities of different
dimensionality. Typically, designs start with wireframe models, which provide an outline of
the shape. These models are next skinned with surfaces to provide a more detailed external
shape definition. Finally the surface model is offset to create thin plates and shells. These
now enclose architectural spaces, which are further subdivided in functional subspaces,
which are then equipped with smaller subassemblies and objects. Ships are frequently
designed with this type of process and therefore require the availability of modelers, which
can support mixed-dimensional objects.

Interrogation methods include:

1.

Idealization of objects for more efficient analysis. This is particularly important for com-
plex systems, such as buildings, ships and airplanes. For example, idealization methods
include the reduction of dimensionality of objects for effective analysis, such as a three-
dimensional beam model to represent a building or a ship, surfaces to represent injection
molded parts or thin plates and shells, etc. Skeleton calculation methods provide one of the
more useful techniques for dimensional reduction of simple parts [41, 83, 104].

68

2. Discretization methods involve meshing or gridding for finite element. boundary element
and computational fluid dvnamic analysis. Automating the meshing process is a topic of
current research and development. A special issue of Advances in Engineering Software and
Workstations edited by Armstrong [3] provides an overview of the state of the art in this
area.

An important manufacturing issue is the planning of robotic operations. The fieid draws
upon geometric modeling and comaputational geometry, combinatorial optimization. higher
than three-dimensional modeling (to account for a large number of degrees of {reedom),
and operations research methods. As an example we refer to the special topic of planning
robotic operations for pocket machining [47].

Under the term generai modeling tools and facilities we include the following:

1. Interference analysis involving, in general. a large number of fixed or moving objects.
Such analysis is used in design specification and verification and in the planning of mana-
facturing and robotic operations [34, 87. 102].

2. Tolerances and inspection methods. In order to bound the possible uncertainty of
a manufacturing process. designers specify tolerances which provide a range for acceptable
performance, functior and assemblv. Inspection is the process of verifying that a manu-
factured product has an inaccuracy satisfying the tolerance constraints. This topic is also
related to reverse engineering methods, in which complete geometric models of manufac-
tured or physical objects are generated using measurements {21, 51].

3. Assemblies and muitifunctional systems. Complex objects require the definition of
assemblies of subsvstems, which in turn may be composed of assemblies of other subsystems.
Graph theoretic methods can be used conveniently for this purpose.

4. Feature represeniation and recognition. Feature representation and feature recogni-
tion are needed in design, analysis and manufacture and remains an important outstanding
problem {78, 93. 106, 107].

5. Visualization, animation and virtual reality methods. Visual verification of a
design is to this day one of the most fundamental steps of the design process. Visualization
techniques, an early objective of computer graphics, has developed into a field of its own with
professional conferences and international events [55, 81, 80, 92]. Animation permits the
visualization and simulation of moving and deforming objects and has also developed into an
active field of research [105]. Finally, virtual reality methods promise to transform the two-
dimensional world of computer graphics visualization into a three-dimensional interactive
medium which includes other sensory information. The field is still in its infancy but rapidly
evolving (32, 113).

69

4.2 Generalized Boundary-Representations for Computer-Aided
Engineering

First generation systems of the seventies were based on the use of Euler operators to guarantee the
representation of valid manifold objects. Many of the early commercial CAD systems were based
on the above formulation but were accessed with more intuitive user interfaces. For example,
higher level algorithms or CSG-like interfaces are necessary for modelers of this kind to be of a
greater practical value.

The first generation modelers were applied in visualization, robotic planning (NC machining and
tool path generation}, interference analysis and in semi-automated methods of object discretiza-
tion. Most early experimental modelers from this class used linear faceted models, primarily for
reasons of efficiency and simplicity of implementation of geometric algorithms. In the intervening
time, the Computer-Aided Geometric Design (CAGD) community has perfected the theory and
algorithms for generating and processing free-form curves and surfaces. More recently, commer-
cial systems which use the topological structures of these early models but support free-form
geometries have emerged. These systems have greatly expanded the domain of application of
geometric modeling techniques to support the design of complex objects. However, these systems
have many weaknesses because of algorithmic and numerical robustness problems that remain un-
resolved to this day. Another weakness of the first generation boundary representation systems
was that Boolean set operations (a most common technique in solid modeling) were not closed,
namely non-manifold objects resulted from their application. This led to a new generation of
systems.

The second generation of geometric modelers, developed in the late eighties, permit the explicit
representation of mixed-dimensional and non-manifold geometric objects with internal structures
and boundaries. These modelers are still of an experimental nature, but hold the promise of a
greatly enhanced range of applications. For example, they permit a systematic use of geometric
modeling in preliminary design, when incomplete and mixed-dimension models are only available.
Similarly, they permit the representation of idealizations and of functional and manufacturing
features. Overall, the second generation systems can support a greater variety of objects and
applications at the expense of more complex data structures. Generalized non-manifold and
mixed-dimensional data structures can represent wireframe, surface and solid models in a single,
unified environment. Unlike the early Euler-based systems, the second generation systems have
deeper differences among themselves.

On a path parallel to the development of non-manifold and mixed dimensional models, computer
scientists have devised abstract modeling concepts with the objective of supporting computational
geometry algorithms, e.g. Voronoi diagrams and Delaunay triangulations. Abstract models are
based on elegant mathematical structures and provide a small number of functions for incremen-
tal construction and modification of objects. Except for the representation of mixed-dimensional
and non-manifold objects, abstract modeling concepts permit the representation of n-dimensional
multi-cell objects with internal boundaries much in the same way as the second generation mod-
elers. For this reason, it is a historical curiosity that abstract modeling concepts and the second
generation geometric modelers were developed largely independently.

70

Bibliography

[1] M. K. Agoston. Algebraic Topology. Marcel Dekker Inc., New York, 1976.

[2] S. Ansaldi, L. De Floriani, and B. Falcidieno. Geometric modeling of solid objects by using
a face adjacency graph representation. Proceedings of SIGGRAPH ’85, Computer Graphics,
19(3):131-140, July 1985.

[3] C. G. Armstrong, editor. Advances in Engineering Software and Workstations. 13(5/6),
September/November 1891.

(4] M. A. Armstrong. Basic Topology. Springer-Verlag, New York, 1983.

[5] L. Bardis and N. M. Patrikalakis. Approximate conversion of rational B-spline patches.
Computer Aided Geomeiric Design, 6(3):189-204, August 1989.

[6] L. Bardis and N. M. Patrikalakis. Surface approximation with rational B-splines. Engineer-
ing with Computers, 6(4):223-235, 1990.

[7] B. Baumgart. A polyhedron representation for computer vision. In National Computer
Conference, pages 589-596. AFIPS Conference Proceedings, 1975.

[8) C. Berge. Graphs and Hypergraphs. North Holland, 1973. Translated and revised edition
of ‘Graphes et Hypergraphes’, Dunod, Paris, 1970.

[9] C. Bliek. Computer Methods for Design Automation. PhD thesis, Massachusetts Institute
of Technology, Cambridge, M A, July 1992,

[10] A. Bowyer and J. Woodwark. A Programmer’s Geemetry. Butterworth and Co., Ltd.,
Sevenoaks, England, 1983.

[11] I. C. Braid, R. C. Hillyard, and I. A. Stroud. Stepwise construction of polyhedra in geometric
modeling. In K. W. Brodlie, editor, Mathematical Methods in Computer Graphics and
Design, pages 123-141, Academic Press, London, 1980.

[12] E. Brisson. Representing geometric structures in d dimensions: Topology and order. In
Proceedings of the Fifth ACM Symposium on Computational Geometry, pages 218-227,
Saarbriicken, Germany, June 1989,

[13] E. Brisson. Representation of d Dimensional Geometric Objects. PhD thesis, Department
of Computer Science and Engineering, University of Washington, Seattle, 1990.

71

[14] E. Brisson. Representing geometric structures in d dimensions: Topology and order. Dis-
crete and Computational Geometry, 9:387-426, 1993.

[15] C. M. Brown. PADL-2: A technical summary. IEEE Computer Graphics and Applications,
2(2):69-84, March 1982.

[16] P. Brunet and D. Ayala. Extended octtree representation of free-form surfaces. Computer
Aided Geometric Design, 4(1-2):141-154, 1987.

[17] C. E. Buckley. A divide-and-conquer algorithm for computing 4-dimensional convex hulls.
In H. Noltemeier, editor, Computational Geometry and its Applications, pages 113-135.
Proceedings of the International Workshop on Computational Geometry, Springer-Verlag,
1988.

[18] M. S. Casale. Free-form solid modeling with trimmed surface patches. IEEE Computer
Graphics and Applications, 7(1):33-43, January 1987.

[19] J.-M. Chen. Integration of Parametric Geometry and Non-Manifold Topology in Geomelric
Modeling. PhD thesis, Carnegie Mellon University, Pittsburgh, Pennsylvania, April 1993.

[20] J.-M. Chen, E. L. Giirsoz, and F. B. Prinz. Integration of parametric geometry and non-
manifold topology in geometric modeling. In J. Rossignac, J. Turner, and G. Allen, editors,
Proceedings of the Second Symposium on Solid Modeling and Applications, pages 53-64,
Montreal, Canada, May 1993. ACM SIGGRAPH in cooperation with the IEEE Computer
Society.

[21] P. N. Chivate and A. G. Jablokow. Solid-model generation from measured point data.
Computer-Aided Design, 25(9):587-600, September 1993.

[22] H. Chiyokura. An extended rounding operator for modeling solids with free-form surfaces.
In T. L. Kunii, editor, Praceedings of Computer Graphics International '87, pages 249-268.
Springer-Verlag, 1987,

[23] H. Chiyokura. Solid Modelling with DESIGNBASE: Theory and Implementation. Addison-
Wesley, 1988.

{24] H. Chiyokura and F. Kimura. Design of solids with free-form surfaces. In Proceedings of
SIGGRAPH 83, Computer Graphics 17(3), pages 289-298, July 1983,

[25] Y. Choi. Vertez-Based Boundary Representation of Non-Manifold Geometric Models. PhD
thesis, Carnegie-Mellon University, Pittsburgh, PA, August 1989.

[26]) C. Chryssostomidis and N. M. Patrikalakis. Geometric modeling issues in computer aided
design of marine structures. Marine Technology Society Journal, 22(2):15-33, December

1988.

[27] L. De Floriani and B. Falcidieno. A hierarchical boundary model for solid object represen-
tation. ACM Transactions on Graphics, 7(1):42-60, January 1988.

[28] H. Desaulniers and N. F. Stewart. An extension of manifold boundary representations to
the r-sets. ACM Transactions on Graphics, 11(1):42-60, January 1992.

72

[29] D. P. Dobkin and M. J. Laszlo. Primitives for the manipulation of three-dimensional sub-
divisions. In Proceedings of the Third ACM Symposium on Computational Geometry, pages
86-99, Waterloo, Canada, June 1987.

[30] D. P. Dobkin and M. J. Laszlo. Primitives for the manipulation of three-dimensijonal sub-
divisions. Algerithmica, 4:3-32, 1989.

[31] J. F. Dufourd. Formal specification of topological subdivisions using hypermaps. Computer
Atded Design, 23(2):99-116, February 1991.

[32] R. Earnshaw, M. Gigante, and H. Jones, editors. Virtual Reality Systems. Academic Press,
London, 1993.

[33] C.Eastman and M. Henrion. GLIDE: A language for design information systems. Computer
Graphics, 11(2):24-33, July 1977.

[34] C. Eastman and R. Thornton. A report on the GLIDE2 language definition. Technical
report, CAD Group, Institute of Physical Planing, Carnegie-Mellon University, Pittsburgh,
PA, March 1979.

[35] C. Eastman and K. Weiler. Geometric modeling using Euler operators. In Proceedings of
the First Annual Conference on Computer Graphics in CAD/CAM Systems, pages 248-259,
May 1979.

[36] J. Edmonds. A combinatorial representation for polyhedral surfaces. American Mathemat-
ical Society Nolices, 7:646, October 1960.

[37] R. T. Farouki. Trimmed surface algorithms for the evaluation and interrogation of solid
boundary representations. IBM Journal of Research and Development, 31(3):314-334, May
1987.

[38] P. C. Filkins, S. T. Tuohy, and N. M. Patrikalakis. Computational methods for blending
surface approximation. Engineering with Computers. 9(1):49-61, 1993.

[39] P. J. Giblin. Graphs, Surfaces and Homology. Chapman and Hall, 1981.

[40] L. Guibas and J. Stolfi. Primitives for the manipulation of general subdivisions and the
computation of Voronoi diagrams. ACM Transactions on Graphics, 4(2):74-123, April 1985,

[41] H. N. Gursoy and N. M. Patrikalakis. Automated interrogation and adaptive subdivision
of shape using medial axis transform. Advances in Engineering Software and Workstations,
13(5/6):287-302, September/November 1991.

[42] E. L. Gursoz and Y. Choi. NOODLES User Manual. CAD Group, Carnegie-Mellon Uni-
versity, Pittsburgh, PA, 1991.

[43] E. L. Giirsdz, Y. Choi, and B. F. Prinz. Vertex-based representation of non-manifold
boundaries. In M. J. Wozny, J. U. Turner, and K. Preiss. editors, Geometric Modeling jor
Product Engineering, pages 107-130, Elsevier Science Publishers, Holland, 1990.

(44] E. L. Giirsdz. Y. Choi, and F. B. Prinz. Boolean set operations in non-manifold represen-
tation objects. Computer Aided Design, 23(1):33-39, January 1991.

(45] F. Harary. Graph Theory. Addison-Wesley, Reading, MA. 1969,

{46] L.-X. He. A non-manifold geometry modeler: An object oriented approach. Master’s thesis,
Massachusetts Institute of Technology, Cambridge, Massachusetts. February 1993.

[47] M. Held. On the Computational Geometry of Pocket Machining. Springer-Verlag, Berlin,
Germany, 1991,

(48] M. Henle. A Combinatorial Introduction to Topology. W. H. Freeman and Company, San
Francisco. 1979,

[49] C. M. Hoffmann. Geometric and Solid Modeling: An Introduction. Morgan Kaufmann
Publishers. Inc.. San Mateo. California. 1989.

[50] C. M. Hoffmann. The problems of accuracy and robustness in geometric computation.
Computer. 22(3):31-41, March 1989.

(51} H. Hoppe, T. DeRose. T. Duchamp, J. McDonald. and W. Stuetzle. Surface reconstruction
from unorganized points. In Proceedings of SIGGRAPH 92, Computer Graphics. 26(2),
pages 71-78. ACM, July 1992.

[52] J. Hoschek and F.-J. Schneider. Approximaté'si)line conversion for integral and :ational
Bézier and B-Spline surfaces. In R. E. Barnhill, editor, Geometry Processing for Design
and Manufacturing, pages 45-87. SIAM, Philadelphia, 1992.

(53] G. M. Hunter and K. Steiglitz. Operations on images using quad trees. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 1(2):145-153, 1979.

[54] R. A. Jinkerson. S. L. Abrams, L. Bardis, C. Chryssostomidis. A. Clément, N. M. Pa-
trikalakis, and F.-E. Wolter. Inspection and feature extraction of marine propellers. Journal
of Ship Production, 9(2):88-106, May 1993.

[55] A. Kaufman. Introduction to volume synthesis. In N. M. Patrikalakis, editor, Scientific
Visualization of Physical Phenomena, pages 25-36. Tokyo: Springer-Verlag, 19¢1.

[56]) F. Kimura. Geomap-IIT: Designing solids with free-form surfaces. IEEE Computer Graphics
and Applications, 4(6):58-72, June 1984.

[57] G. A. Kriezis. Algorithms for Rational Spline Surface Intersections. PhD thesis, Mas-
sachusetts Institute of Technology, Cambridge, Massachusetts, March 1990.

[58] G. A. Kriezis and N. M. Patrikalakis. Rational polynomial surface intersections. In G. A.
Gabriele, editor, Proceedings of the 17th ASME Design Automation Conference, Vol. II,
pages 43-53, Miami, September 1991. ASME, New York, 1991.

[59] G. A. Kriezis, N. M. Patrikalakis, and F.-E. Wolter. Topological and differential equation
methods for surface intersections. Computer Aided Design, 24(1):41-55, Janunary 1992.

74

[60] G. A. Kriezis. P. V. Prakash. and N. M. Patrikalakis. A method for intersecting alge-
braic surfaces with rational polynomial patches. Computer Aided Design, 22(10):645-654,
December 1990.

[61] T.L. Kunii, T. Sato. and K. Yamaguchi. Generation of topological boundary representations
from octtree encoding. J[EEE Computer Graphics and A pplications. 5(3):20-38. March 1985.

(62] M. J. Laszlo. A Data Structure for Manipulating Three-Dimensional Subdivisions. PhD
thesis, Department of Computer Science, Princeton University, August 1987.

[63] Y. T. Lee and A. A. G. Requicha. Algorithms for computing the volume and other integral
properties of solid objects, I: Known methods and open issues. Communications of the
ACM, 25(9):635-611, September 1982.

[64] Y. T. Lee and A. A. G. Requicha. Algorithms for computing the volume and other integral
properties of solids. II: A family of algorithms based on representation conversion and
cellular approximation. Communications of the ACM. 25(9):642-650. September 1982.

65] P. Lienhardt. Subdivisions of n-dimensional spaces and n-dimensional generalized maps.
In Proceedings of the Fifth ACM Symposium on Computational Geometry, pages 228-236,
Saarbruecken. Germany, June 1989,

{66] P. Lienhardt. Topological models for boundary representation: A comparison with n-
dimensional generalized maps. Computer Aided Design, 23(1):59-82, January 1991.

[67] T.Maekawa and N. M. Patrikalakis. Computation of singularities and intersections of offsets
of planar curves. Computer Aided Geometric Design, 10(5):407-429, October 1993.

(68] T. Maekawa and N. M. Patrikalakis. Interrogation of differential geometry properties for
design and manufacture. The Visual Computer, 10(4):216-237, March 1994,

(69] M. Mantyld. An Introduction to Solid Modeling. Computer Science Press, Rockville, Mary-
land, 1988.

(70) M. Mintyl3 and R. Sulonen. GWB - A solid modeller with Euler operators. [EEE Computer
Graphics and Applications, 2(7):17-32, September 1982,

[71] W. 5. Massey. 4 Basic Course in Algebraic Topology. Springer-Verlag, 1991.

(72] H. Masuda. Topological operators and Boolean operations for complex-based nonmanifold
geometric models. Computer Aided Design, 25(2):119~129, February 1993.

73] D. Meagher. Geometric modeling using octtree encoding. Computer Graphics and Image
g
Processing, 19:129-147, June 1982.

[74] J. R. Munkres. Topology: a First Course. Prentice-Hall, Englewood Cliffs, NJ, 1975.

(75] J. R. Munkres. Elements of Algebraic Topology. Addison-Wesley, 1984.

(76] A. Neumaier. Interval Methods for Systems of Equations. Cambridge University Press,
Cambridge, 1990.

75

{77] A. Paoluzzi, F. Bernardini, C. Cattani, and V. Ferrucci. Dimension-independent modeling
with simplicial complexes. ACM Transactions on Graphics, 12(1):56-102, January 1993.

[78] S. Parry-Barwock and A. Bowyer. Is the features interface ready? In R. Martin, editor,
Directions in Geometric Computing, pages 129-160. Information Geometers, Winchester,
UK, 1993.

[79] N. M. Patrikalakis. Approximate conversion of rational splines. Computer Aided Geometric
Design, 6(2):155-165, 1989.

[80] N. M. Patrikalakis, editor. Scientific Visualization of Physical Phenomena, Proceedings of
the 9th International Conference on Computer Graphics, CGI 91, MIT, Cambridge, MA,
June 1991, Tokyo, 1991. Springer.

{81] N. M. Patrikalakis, editor. Visualization in Science and Engineering, Special Issue of The
Visual Computer from CGI ’91, Vol. 8, Nos. 5-6. Springer, June 1992,

[82] N. M. Patrikalakis. Surface-to-surface intersections. IEEE Computer Graphics and Appli-
cations, 13(1):89-95, January 1993.

[83] N. M. Patrikalakis and L. Bardis. Feature extraction from B-spline marine propeller repre-
sentations. Journal of Ship Research, 36(3):233-247, September 1992.

[84] N. M. Patrikalakis and P. V. Prakash. Surface intersections for geometric modeling. Journal
of Mechanical Design, ASME Transactions, 112(1):100-107, March 1990.

[85] F. P. Preparata and M. 1. Shamos. Computational Geometry: An Introduction. Springer-
Verlag, New York, 1985.

[86] A. A. G. Requicha. Representations of solid objects - theory, methods and systems. ACM
Computing Surveys, 12(4):437-464, December 1980,

[87] A. A. G. Requicha. Progress in solid modeling and its applications. In Proccedings of the
18th NSF Design and Manufacturing Systems Conference, pages 761-766, Atlanta, January
1992. SME.

[88] A. A. G. Requicha. Solid modeling - a 1988 update. In B. Ravani, editor, CAD-Based
Programming for Sensory Robots, pages 3-22, New York: Springer-Verlag, 1988.

[89] A. A. G. Requicha and H. B. Voelcker. Boolean operations in solid modeling: Boundary
evaluation and merging algorithms. Proceedings of the IEEE, 3(7):30-44, October 1983.

[90] A. A. G. Requicha and H. B. Voelcker. Solid modeling: Current status and research direc-
tions. IEEE Computer Graphics and Applicdtions, 3(7):25-37, October 1983.

[91] A. A.G. Requicha and J. R. Rossignac. Solid modeling and beyond. IEEE Computer
Graphics and Applications, 12(5):31-44, September 1992.

[92] D. F. Rogers and R. A. Earnshaw, editors. State of the Art in Computer Graphics. Springer-
Verlag, New York, 1991.

76

(93] J. R. Rossignac. Issues on feature-based editing and interrogation of solid models. Com-
puters and Graphics, 14(2):149-172, 1990.

[94] J. R. Rossignac and M. A. O’Connor. SGC: A dimension-independent model for pointsets
with internal structures and incomplete boundaries. In M. J. Wozny, J. U. Turner, and
K. Preiss, editors, Geometric Modelling for Product Engineering, pages 145-180, Holland,
Elsevier Science Publishers, 1990,

[95] J. R. Rossignac and A. G. Requicha. Constructive non-regularized geometry. Computer
Aided Design, 23(1):21-32, January 1991.

[96] S. D. Roth. Ray casting for modeling solids. Computer Graphics and Image Processing,
18(2):109-144, 1082.

[97] H. Samet. The quadtree and related hierarchical data structures. ACM Computing Surveys,
15:187-260, 1984,

(98] H. Samet. Applications of Spatial Data Structures: Computer Graphics, Image Processing
and GIS. Addison-Wesley, Reading, MA, 1990,

[99) H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, Reading,
MA, 1990.

[100]} H. Samet and R. E. Webber. Data structures to support Bézier-based modeling. Computer
Aided Design, 23(3):162-176, April 1991.

[101] E. C. Sherbrooke and N. M. Patrikalakis. Computation of the solutions of nonlinear poly-
nomial systems. Computer Aided Geometric Design, 10(5):379-405, October 1993.

[102] A. J. Spyridi and A. A. G. Requicha. Accessibility analysis for polyhedral objects. In S. G.
Tzafestas, editor, Engineering Systems with Intelligence: Concepts, Tools and Applications,
pages 317-324. Kluwer Academic Publishers, 1991.

[103] R. Stillwell. Classical Topology and Combinatorial Group Theory. Number 72 in Graduate
Texis in Mathematics. Springer-Verlag, 1984,

[104] A. Sudhalkar, L. Giirsdz, and F. Prinz. Continuous skeletons of discrete objects. In
J. Rossignac, J. Turner, and G. Allen, editors, Proceedings of the Second Symposium on
Solid Modeling and Applications, pages 85-94. ACM, 1993.

[105] N. M. Thalmann and D. Thalmann, editors. Journal of Visualization and Computer Ani-
malion. 1990.

[106] J. H. Vandebrande and A. A. G. Requicha. Spatial reasoning for the automatic recognition
of interacting form features. In Proceedings of the ASME International Conference on
Computers in Engineering, volume 1, pages 251-256, Boston, August 1990. ASME.

[107]) J. H. Vandebrande and A. A. G. Requicha. Spatial reasoning for the automatic recognition of
machinable features in solid models. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 1993. To appear.

77

[108] K. Weiler. Edge-based data structures for solid modeling in curved surface environments.
IEEE Computer Graphics and Applications, 5(1):21-40, January 1985.

[109] K. Weiler. Boundary graph operators for non-manifold geometric modeling representations.
In M. J. Wozny, H. McLaughlin, and J. Encarnacao, editors, Geometric Modeling for CAD
Applications, pages 37-66, Elsevier Science Publishers, Holland, 1986.

[110] K. Weiler. The radial edge structure: A topological representation for non-manifold geo-
metric modeling. In M. J. Wozny, H. McLaughlin, and J. Encarnacao, editors, Geomelric
Modeling for CAD Applications, pages 3-36, Elsevier Science Publishers, Holland, 1986.

[111] K. Weiler and D. McLachlan. Generalized sweep operators in the non-manifold environment.
In M.]. Wozny, J. U. Turner, and K. Preiss, editors, Geometric Modeling for Product
Engineering, pages 87-106, Elsevier Science Publishers, Holland, 1990.

[112] K. J. Weiler. Topological Structures for Geometric Modeling. PhD thesis, Rensselaer Poly-
technic Institute, Troy, NY, 1986.

[113] A. Wexelblat, editor. Virtual Reality: Applications and Ezplorations. Academic Press,
London, 1993.

[114] P. R. Wilson. Euler formulas and geometric modeling. IEEE Computer Graphics and
Applications, 5(8):45-60, August 1985.

[115] P. R. Wilson. Solid modeling R&D in the USA. In European Conference on Solid Modeling,
London, September 1983.

[116] A. Wong and D. Sriram. Geometric modeling for cooperative product development. In
J. Rossignac, J. Turner, and G. Allen, editors, Proceedings of the Second Symposium on
Solid Modeling and Applications, pages 497-498. ACM SIGGRAPH in cooperation with
the IEEE Computer Society, May 1993.

[117] T. C. Woo. A combinatorial analysis of boundary data structure schemata. JEEE Computer
Graphics and Applications, 5{3):38-52, March 1985.

[118] T. C. Woo and J. D. Wolter. A constant expected time, linear storage data structure for
representing three-dimensional objects. IEEE Transactions on Systems, Man, and Cyber-
netics, 14(3):510-515, May/June 1984.

[119] K. Yamaguchi, T. L. Kunii, K. Fujumura, and H. Toriya. Octtree-related data structures
and algorithms. IEEE Computer Graphics and Applications, 4(6):24-37, June 1984.

[120] J. Zhou, E. C. Sherbrooke, and N. M. Patrikalakis. Computation of stationary points of
distance functions. Engineering with Computers, 9(4):231-246, Winter 1993.

78

Index

abstract models 3, 41

accumulation point 7

adjacency relations 3, 19, 22, 23, 24, 23, 52

animation 69

assemblies 69

B-rep 3, 4, 25, 26. 46, 49

Betti numbers 38

blends 68

boundary models 2, 3

boundary of a set 6

boundary representation 3, 4

bounded set 6

BUILD 19, 20

cell-tuple structure 56, 57, 58, 59, 60, 61, 64

ciosed 5, 6, 11, 12, 13, 14, 25, 26, 41, 47, 56

closure of P 6

combinatorial optimization 69

compact set 6

compatible 21, 33, 35, 36, 37

connected 12, 13, 14, 15, 19, 21, 22, 32, 38

constructive models 2, 3

constructive solid geometry 3

crosscap 14, 46

CSG 3,4,24,37,64, 68,70

cusp 29, 31, 32, 60

CW complex 11

cycle 14, 15, 31

data convertors 67

decomposition models 2

Delaunay triangulations 4, 49, 55, 70

DESIGNBASE 23, 24

digraph 14

discretization methods 69

disk 21, 29, 31, 33. 49

Drop operator 36

dual 12, 12, 13, 16, 17, 25. 41, 43, 44, 45, 46,
51, 52, 51, 53, 59, 64

79

edge algebra 44, 45, 46, 52, 55, 60

edge-orientation 29, 31

edge-orientation 31

edgeuses 25, 27, 28, 60

Euclidean space 3,

Euler operators 4, 14, 18,m 19, 20, 21, 22, 24,
25, 29, 37, 38, 41, 49, 63, 67, 70

Euler-Poincaré formula 4, 38

extent 32, 34

E{< E >}? structure 24

F < E > structure 24

facet-edge pair structure 49, 50, 31, 52, 53,
54, 55, 56, 59, 60

faceuse 27, 28, 29

feature recognition 69

feature representation 69

genus 13, 13, 26, 49

Geomap-II1 24

geometric complex 33, 34, 35

GIS 65

GNOMES 37

gridding 69

GWB 21, 22, 37

half-edge 21, 22

hali-n-ball 8

half-space models 3

handcuff 50

handle 13, 15, 45, 49

Hausdorff space 6, 11

hexblock structure 55

HFAH 22, 25

homeomorphism 7, 8, 10, 11, 12

hybrid modelers 4

hypergraph 16, 45

I-orbit 57

idealization 68, 70

incidence graphs 3, 18. 26, 35, 536, 38, 539, 61,

63

Incorporate operator 36

inspection methods 69

interior 6, 8, 26, 29, 33, 36

interrogation 65, 67, 68

Join operator 36. 61, 63

Klein bottle 11, 21

limit point 7

loops 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 38

loopuse 27, 28

m-dimensional face 8

manifold 4, 11, 12, 14, 18, 21, 24, 2§, 28, 32,
37, 41, 43, 44, 45, 56, 59, 60, 61, 64,
70

meshing 69

mixed-dimension 3, 4, 68, 70

modeling layer 66, 67

multifunctional systems 69

multigraph 14

Méobius strip 11, 14, 21

n-1-dimensional sphere 6

n-complex 11, 12, 16

n-G-maps 64

n-manifold 8, 11. 41, 56, 58, 59, 61, 63, 64

n-manifold subdivision 12, 61

NC machining 70

neighborhood of a point 6

non-homogeneous objects 67

non-manifold 3, 4, 8, 9, 18, 19, 24, 26, 27, 28,

29, 31, 32, 37, 38,39, 70
non-uniform rationai B-splines 68
NOODLES 31
numerical robustness 67, 70
NURBS 68
octtree 2
offset 68
open n-ball 3, 6, 11
open set 5,6, 7
orientable 10, 11, 13, 14, 21, 41, 45, 49
parametric design 68
path of length k 14
path-connected 13
pocket machining 69
potytope 8
projective plane 14, 41

80

pseudograph 24

quad-edge structure 41, 44, 45, 46, 49, 53, 54,
56. 39, 60

quadtrees 2

r-set 37

radial-edge structure 26, 27, 28, 29, 32

ray casting 3

real algebraic variety 32

region 15, 16, 25, 27, 29, 31

regular simplicial complex 9

regularized set operations 3, 37

representation layver 66, 67

reverse engineering methods 69

robotic operations 69

ROMULUS 20

selection 32, 25, 26

selective geometric complex 32, 33

SFF 67

SGC 32, 33, 34, 37

SHARED 37

simple graph 14, 15

simple path 14

simplicial complex 8, 9, 10, 11, 13, 16, 64

simplification 32, 35, 36, 45

solid free-form fabrication 67

solid medeling 2, 4, 10, 18, 26, 45

subdivision 26, 27, 29, 32, 35, 36, 41, 43, 44,
46, 47, 49, 53, 54, 55, 56, 57, 58, 59,
60, 61, 63, 64

subvariety 32

sweeps 68

symmetric data structure 23

tolerances 69

tool path generation 70

topological space 5, 6, 7, 11

topological sufficiency 24, 25, 28

tri-cyclic-cusp structure 29, 30, 31, 32

triangulable set 10

undirected graph 14

unjoin operator 63

unlift operator 61, 62

V < E > structure 24

vertex-edge structure 24, 25

vertexuse 27, 28

virtual reality 69

visualization 69

Voronoi diagrams 4. 41, 49, 55, 67, 70
wall 29, 31

winged-edge structure 18, 19, 23, 24, 25
zone 29, 31

) EGEIVE

r

DEC ¢ 25

: L= ST/ CRANT DEPOSITORY
: NATIONIS UIGRARY BUILDING
URI MARRAGANSETT BAY CAMPUS
NARRAGANSETT, RI. 02382

81

